• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Fe atoms trapped on graphene as a potential efficient catalyst for room-temperature complete oxidation of formaldehyde: a first-principles investigation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Guo, Huimin
    Li, Min
    Liu, Xin
    Meng, Changgong
    Linguerri, Roberto
    Han, Yu cc
    Chambaud, Gilberte
    KAUST Department
    Advanced Membranes and Porous Materials Research Center
    Chemical Science Program
    Nanostructured Functional Materials (NFM) laboratory
    Physical Science and Engineering (PSE) Division
    Date
    2017
    Permanent link to this record
    http://hdl.handle.net/10754/625004
    
    Metadata
    Show full item record
    Abstract
    We investigated the oxidation of formaldehyde, one of the major indoor air pollutants, into CO2 and H2O over Fe atoms trapped in defects on graphene by first-principles based calculations. These trapped Fe atoms are not only stable to withstand interference from the reaction environments but are also efficient in catalyzing the reactions between coadsorbed O-2 and formaldehyde. The oxidation of formaldehyde starts with the formation of a peroxide-like intermediate and continues by its dissociation into. eta(1)-OCHO coadsorbed with an OH radical. Then, the adsorbed OCHO undergoes conformational changes and hydride transfer, leading to the formation of H2O and CO2. Subsequent adsorption of O2 or formaldehyde facilitates desorption of H2O and a new reaction cycle initiates. The calculated barriers for formation and dissociation of the peroxide-like intermediate are 0.43 and 0.40 eV, respectively, and those for conformation changes and hydride transfer are 0.47 and 0.13 eV, respectively. These relatively low barriers along the reaction path suggest the potential high catalytic performance of trapped Fe atoms for formaldehyde oxidation.
    Citation
    Guo H, Li M, Liu X, Meng C, Linguerri R, et al. (2017) Fe atoms trapped on graphene as a potential efficient catalyst for room-temperature complete oxidation of formaldehyde: a first-principles investigation. Catal Sci Technol 7: 2012–2021. Available: http://dx.doi.org/10.1039/c7cy00307b.
    Sponsors
    This work was supported by the NSFC (21573034, 21373036 and 21103015), the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (second phase, No: NSFC2015_65 and NSFC2015_66), the Fundamental Research Funds for the Central Universities (DUT15LK18, DUT14LK09 and DUT12LK14) and the Special Academic Partner GCR Program from the King Abdullah University of Science and Technology. X. L. would also like to thank the Universite Paris-Est for the visiting professorship. The supercomputer time was provided by the National Supercomputing Center in Guangzhou, China, the Supercomputing Core Laboratory at the King Abdullah University of Science and Technology and the High Performance Computing Center, Dalian University of Technology.
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    Catalysis Science & Technology
    DOI
    10.1039/c7cy00307b
    Additional Links
    http://pubs.rsc.org/en/Content/ArticleLanding/2017/CY/C7CY00307B#!divAbstract
    ae974a485f413a2113503eed53cd6c53
    10.1039/c7cy00307b
    Scopus Count
    Collections
    Articles; Advanced Membranes and Porous Materials Research Center; Physical Science and Engineering (PSE) Division; Chemical Science Program

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.