Show simple item record

dc.contributor.authorTurcksin, Bruno
dc.contributor.authorKronbichler, Martin
dc.contributor.authorBangerth, Wolfgang
dc.date.accessioned2017-06-12T13:52:08Z
dc.date.available2017-06-12T13:52:08Z
dc.date.issued2016-08-31
dc.identifier.citationTurcksin B, Kronbichler M, Bangerth W (2016) WorkStream-- A Design Pattern for Multicore-Enabled Finite Element Computations. ACM Transactions on Mathematical Software 43: 1–29. Available: http://dx.doi.org/10.1145/2851488.
dc.identifier.issn0098-3500
dc.identifier.doi10.1145/2851488
dc.identifier.urihttp://hdl.handle.net/10754/624966
dc.description.abstractMany operations that need to be performed in modern finite element codes can be described as an operation that needs to be done independently on every cell, followed by a reduction of these local results into a global data structure. For example, matrix assembly, estimating discretization errors, or converting nodal values into data structures that can be output in visualization file formats all fall into this class of operations. Using this realization, we identify a software design pattern that we callWorkStream and that can be used to model such operations and enables the use of multicore shared memory parallel processing. We also describe in detail how this design pattern can be efficiently implemented, and we provide numerical scalability results from its use in the DEAL.II software library.
dc.description.sponsorshipB. Turcksin andW. Bangerth were partially supported by the National Science Foundation under award OCI-1148116 as part of the Software Infrastructure for Sustained Innovation (SI2) program; by the Computational Infrastructure in Geodynamics initiative (CIG), through the National Science Foundation under Award No. EAR-0949446 and The University of California - Davis; and through Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).
dc.publisherAssociation for Computing Machinery (ACM)
dc.subjectAssembly
dc.subjectFinite element algorithms
dc.subjectPipeline software pattern
dc.titleWorkStream-- A Design Pattern for Multicore-Enabled Finite Element Computations
dc.typeArticle
dc.identifier.journalACM Transactions on Mathematical Software
dc.contributor.institutionTexas A#38;M University, College Station, TX
dc.contributor.institutionTechnische Universität München, München, Germany
kaust.grant.numberKUS-C1-016-04
dc.date.published-online2016-08-31
dc.date.published-print2016-08-29


This item appears in the following Collection(s)

Show simple item record