• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Correlation of Local Structure and Diffusion Pathways in the Modulated Anisotropic Oxide Ion Conductor CeNbO4.25

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Pramana, Stevin S. cc
    Baikie, Tom
    An, Tao
    Tucker, Matthew G.
    Wu, Ji
    Schreyer, Martin K.
    Wei, Fengxia
    Bayliss, Ryan D.
    Kloc, Christian L.
    White, Timothy J.
    Horsfield, Andrew P.
    Skinner, Stephen J. cc
    Date
    2016-01-25
    Online Publication Date
    2016-01-25
    Print Publication Date
    2016-02-03
    Permanent link to this record
    http://hdl.handle.net/10754/624955
    
    Metadata
    Show full item record
    Abstract
    CeNbO is reported to exhibit fast oxygen ion diffusion at moderate temperatures, making this the prototype of a new class of ion conductor with applications in a range of energy generation and storage devices. To date, the mechanism by which this ion transport is achieved has remained obscure, in part due to the long-range commensurately modulated structural motif. Here we show that CeNbO forms with a unit cell 12 times larger than the stoichiometric tetragonal parent phase of CeNbO as a result of the helical ordering of Ce and Ce ions along z. Interstitial oxygen ion incorporation leads to a cooperative displacement of the surrounding oxygen species, creating interlayer NbO connectivity by extending the oxygen coordination number to 7 and 8. Molecular dynamic simulations suggest that fast ion migration occurs predominantly within the xz plane. It is concluded that the oxide ion diffuses anisotropically, with the major migration mechanism being intralayer; however, when obstructed, oxygen can readily move to an adjacent layer along y via alternate lower energy barrier pathways.
    Citation
    Pramana SS, Baikie T, An T, Tucker MG, Wu J, et al. (2016) Correlation of Local Structure and Diffusion Pathways in the Modulated Anisotropic Oxide Ion Conductor CeNbO4.25. Journal of the American Chemical Society 138: 1273–1279. Available: http://dx.doi.org/10.1021/jacs.5b11373.
    Sponsors
    We gratefully acknowledge the support of the EPSRC for the award of a doctoral training account studentship for R.D.B. Additionally, we acknowledge the support of King Abdullah University of Science and Technology, who partially funded this work (S.S.P. and J.W.). We further thank STFC for the award of neutron powder diffraction beam time at the Rutherford Appleton Laboratory (ISIS) under award RB1120177. We also acknowledge the Institut Laue-Langevin (ILL) for the award of Easy access on the D2B beamline and Diamond Light Source Ltd., U.K., for access to the I11 powder diffraction beamline.
    Publisher
    American Chemical Society (ACS)
    Journal
    Journal of the American Chemical Society
    DOI
    10.1021/jacs.5b11373
    ae974a485f413a2113503eed53cd6c53
    10.1021/jacs.5b11373
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.