Show simple item record

dc.contributor.authorBabuska, Ivo
dc.contributor.authorMotamed, Mohammad
dc.contributor.authorTempone, Raul
dc.date.accessioned2017-06-08T06:32:29Z
dc.date.available2017-06-08T06:32:29Z
dc.date.issued2016-01-06
dc.identifier.urihttp://hdl.handle.net/10754/624836
dc.description.abstractWe present a stochastic multilevel global-local algorithm [1] for computing elastic waves propagating in fiber-reinforced polymer composites, where the material properties and the size and distribution of fibers in the polymer matrix may be random. The method aims at approximating statistical moments of some given quantities of interest, such as stresses, in regions of relatively small size, e.g. hot spots or zones that are deemed vulnerable to failure. For a fiber-reinforced cross-plied laminate, we introduce three problems: 1) macro; 2) meso; and 3) micro problems, corresponding to the three natural length scales: 1) the sizes of plate; 2) the tickles of plies; and 3) and the diameter of fibers. The algorithm uses a homogenized global solution to construct a local approximation that captures the microscale features of the problem. We perform numerical experiments to show the applicability and efficiency of the method.
dc.titleA Stochastic Multiscale Method for the Elastic Wave Equations Arising from Fiber Composites
dc.typePoster
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.conference.dateJanuary 5-10, 2016
dc.conference.nameAdvances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2016)
dc.conference.locationKAUST
dc.contributor.institutionUniversity of New Mexico
dc.contributor.institutionUniversity of Texas at Austin
kaust.personTempone, Raul
refterms.dateFOA2018-06-13T14:54:58Z


Files in this item

This item appears in the following Collection(s)

Show simple item record