Show simple item record

dc.contributor.authorSandberg, Mattias
dc.date.accessioned2017-06-05T08:35:49Z
dc.date.available2017-06-05T08:35:49Z
dc.date.issued2015-01-07
dc.identifier.urihttp://hdl.handle.net/10754/624118
dc.description.abstractThe Monte Carlo (and Multi-level Monte Carlo) finite element method can be used to approximate observables of solutions to diffusion equations with log normal distributed diffusion coefficients, e.g. modelling ground water flow. Typical models use log normal diffusion coefficients with H¨older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible and can be larger than the computable low frequency error. This talk will address how the total error can be estimated by the computable error.
dc.relation.urlhttp://mediasite.kaust.edu.sa/Mediasite/Play/26f872e9bdcd4f12b8675bde46c1f13c1d?catalog=ca65101c-a4eb-4057-9444-45f799bd9c52
dc.titleComputational error estimates for Monte Carlo finite element approximation with log normal diffusion coefficients
dc.typePresentation
dc.conference.dateJanuary 6-9, 2015
dc.conference.nameAdvances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)
dc.conference.locationKAUST
dc.contributor.institutionKTH Royal Institute of Technology
refterms.dateFOA2018-06-14T03:06:15Z


Files in this item

This item appears in the following Collection(s)

Show simple item record