• Login
    View Item 
    •   Home
    • Research
    • Presentations
    • View Item
    •   Home
    • Research
    • Presentations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Perspectives on Nonlinear Filtering

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Presentation
    Authors
    Law, Kody
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2015-01-07
    Permanent link to this record
    http://hdl.handle.net/10754/624105
    
    Metadata
    Show full item record
    Abstract
    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).
    Conference/Event name
    Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)
    Additional Links
    http://mediasite.kaust.edu.sa/Mediasite/Play/d61b5a2ad454433e8c0d5ef5dac384d81d?catalog=ca65101c-a4eb-4057-9444-45f799bd9c52
    Collections
    Presentations; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division; Conference on Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.