• Login
    View Item 
    •   Home
    • Research
    • Presentations
    • View Item
    •   Home
    • Research
    • Presentations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Surrogate models and optimal design of experiments for chemical kinetics applications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Presentation
    Authors
    Bisetti, Fabrizio cc
    KAUST Department
    Clean Combustion Research Center
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Reactive Flow Modeling Laboratory (RFML)
    Date
    2015-01-07
    Permanent link to this record
    http://hdl.handle.net/10754/624103
    
    Metadata
    Show full item record
    Abstract
    Kinetic models for reactive flow applications comprise hundreds of reactions describing the complex interaction among many chemical species. The detailed knowledge of the reaction parameters is a key component of the design cycle of next-generation combustion devices, which aim at improving conversion efficiency and reducing pollutant emissions. Shock tubes are a laboratory scale experimental configuration, which is widely used for the study of reaction rate parameters. Important uncertainties exist in the values of the thousands of parameters included in the most advanced kinetic models. This talk discusses the application of uncertainty quantification (UQ) methods to the analysis of shock tube data as well as the design of shock tube experiments. Attention is focused on a spectral framework in which uncertain inputs are parameterized in terms of canonical random variables, and quantities of interest (QoIs) are expressed in terms of a mean-square convergent series of orthogonal polynomials acting on these variables. We outline the implementation of a recent spectral collocation approach for determining the unknown coefficients of the expansion, namely using a sparse, adaptive pseudo-spectral construction that enables us to obtain surrogates for the QoIs accurately and efficiently. We first discuss the utility of the resulting expressions in quantifying the sensitivity of QoIs to uncertain inputs, and in the Bayesian inference key physical parameters from experimental measurements. We then discuss the application of these techniques to the analysis of shock-tube data and the optimal design of shock-tube experiments for two key reactions in combustion kinetics: the chain-brancing reaction H + O2 ←→ OH + O and the reaction of Furans with the hydroxyl radical OH.
    Conference/Event name
    Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)
    Additional Links
    http://mediasite.kaust.edu.sa/Mediasite/Play/a08d38a04a87419e83f99876e2ad79061d?catalog=ca65101c-a4eb-4057-9444-45f799bd9c52
    Collections
    Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center; Presentations; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division; Conference on Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.