Show simple item record

dc.contributor.authorMontes Muñoz, Enrique
dc.contributor.authorSchwingenschlögl, Udo
dc.date.accessioned2017-05-31T11:23:14Z
dc.date.available2017-05-31T11:23:14Z
dc.date.issued2017
dc.identifier.citationMontes E, Schwingenschlögl U (2017) Transport properties of hydrogen passivated silicon nanotubes and silicon nanotube field effect transistors. J Mater Chem C 5: 1409–1413. Available: http://dx.doi.org/10.1039/c6tc04429h.
dc.identifier.issn2050-7526
dc.identifier.issn2050-7534
dc.identifier.doi10.1039/c6tc04429h
dc.identifier.urihttp://hdl.handle.net/10754/623926
dc.description.abstractWe investigate the electronic transport properties of silicon nanotubes attached to metallic electrodes from first principles, using density functional theory and the non-equilibrium Green's function method. The influence of the surface termination is studied as well as the dependence of the transport characteristics on the chirality, diameter, and length. Strong electronic coupling between nanotubes and electrodes is found to be a general feature that results in low contact resistance. The conductance in the tunneling regime is discussed in terms of the complex band structure. Silicon nanotube field effect transistors are simulated by applying a uniform potential gate. Our results demonstrate very high values of transconductance, outperforming the best commercial silicon field effect transistors, combined with low values of sub-threshold swing.
dc.description.sponsorshipThe research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.urlhttp://pubs.rsc.org/en/Content/ArticleLanding/2017/TC/C6TC04429H#!divAbstract
dc.titleTransport properties of hydrogen passivated silicon nanotubes and silicon nanotube field effect transistors
dc.typeArticle
dc.contributor.departmentComputational Physics and Materials Science (CPMS)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalJ. Mater. Chem. C
kaust.personMontes Muñoz, Enrique
kaust.personSchwingenschlögl, Udo


This item appears in the following Collection(s)

Show simple item record