• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Pushing desalination recovery to the maximum limit: Membrane and thermal processes integration

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Shahzad, Muhammad Wakil
    Burhan, Muhammad
    Ng, Kim Choon cc
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Environmental Science and Engineering Program
    Water Desalination and Reuse Research Center (WDRC)
    Date
    2017-05-05
    Online Publication Date
    2017-05-05
    Print Publication Date
    2017-08
    Permanent link to this record
    http://hdl.handle.net/10754/623897
    
    Metadata
    Show full item record
    Abstract
    The economics of seawater desalination processes has been continuously improving as a result of desalination market expansion. Presently, reverse osmosis (RO) processes are leading in global desalination with 53% share followed by thermally driven technologies 33%, but in Gulf Cooperation Council (GCC) countries their shares are 42% and 56% respectively due to severe feed water quality. In RO processes, intake, pretreatment and brine disposal cost 25% of total desalination cost at 30–35% recovery. We proposed a tri-hybrid system to enhance overall recovery up to 81%. The conditioned brine leaving from RO processes supplied to proposed multi-evaporator adsorption cycle driven by low temperature industrial waste heat sources or solar energy. RO membrane simulation has been performed using WinFlow and IMSDesign commercial softwares developed by GE and Nitto. Detailed mathematical model of overall system is developed and simulation has been conducted in FORTRAN. The final brine reject concentration from tri-hybrid cycle can vary from 166,000ppm to 222,000ppm if RO retentate concentration varies from 45,000ppm to 60,000ppm. We also conducted economic analysis and showed that the proposed tri-hybrid cycle can achieve highest recovery, 81%, and lowest energy consumption, 1.76kWhelec/m3, for desalination reported in the literature up till now.
    Citation
    Shahzad MW, Burhan M, Ng KC (2017) Pushing desalination recovery to the maximum limit: Membrane and thermal processes integration. Desalination 416: 54–64. Available: http://dx.doi.org/10.1016/j.desal.2017.04.024.
    Sponsors
    Authors would like to thank to King Abdullah University of Science & Technology (KAUST), Saudi Arabia.
    Publisher
    Elsevier BV
    Journal
    Desalination
    DOI
    10.1016/j.desal.2017.04.024
    Additional Links
    http://www.sciencedirect.com/science/article/pii/S0011916417305313
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.desal.2017.04.024
    Scopus Count
    Collections
    Articles; Biological and Environmental Science and Engineering (BESE) Division; Environmental Science and Engineering Program; Water Desalination and Reuse Research Center (WDRC)

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.