• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline Environments

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Wang, Hong
    Min, Shixiong cc
    Wang, Qiang
    Li, Debao
    Casillas, Gilberto
    Ma, Chun
    Li, Yangyang cc
    Liu, Zhixiong
    Li, Lain-Jong cc
    Yuan, Jiayin
    Antonietti, Markus
    Wu, Tao cc
    KAUST Department
    Laboratory of Nano Oxides for Sustainable Energy
    Material Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2017-04-07
    Online Publication Date
    2017-04-07
    Print Publication Date
    2017-04-25
    Permanent link to this record
    http://hdl.handle.net/10754/623871
    
    Metadata
    Show full item record
    Abstract
    Self-supported electrocatalysts being generated and employed directly as electrodes for energy conversion has been intensively pursued in the fields of materials chemistry and energy. Herein, we report a synthetic strategy to prepare freestanding hierarchically structured, nitrogen-doped nanoporous graphitic carbon membranes functionalized with Janus-type Co/CoP nanocrystals (termed as HNDCM-Co/CoP), which were successfully applied as a highly efficient, binder-free electrode in the hydrogen evolution reaction (HER). Benefited from multiple structural merits, such as a high degree of graphitization, three-dimensionally interconnected micro/meso/macropores, uniform nitrogen doping, well-dispersed Co/CoP nanocrystals, as well as the confinement effect of the thin carbon layer on the nanocrystals, HNDCM-Co/CoP exhibited superior electrocatalytic activity and long-term operation stability for HER under both acidic and alkaline conditions. As a proof-of-concept of practical usage, a 5.6 cm × 4 cm × 60 μm macroscopic piece of HNDCM-Co/CoP was prepared in our laboratory. Driven by a solar cell, electroreduction of water in alkaline conditions (pH 14) was performed, and H was produced at a rate of 16 mL/min, demonstrating its potential as real-life energy conversion systems.
    Citation
    Wang H, Min S, Wang Q, Li D, Casillas G, et al. (2017) Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline Environments. ACS Nano 11: 4358–4364. Available: http://dx.doi.org/10.1021/acsnano.7b01946.
    Sponsors
    H.W. and T.W. thank the King Abdullah University of Science and Technology (KAUST) for financial support. S.M. acknowledges the financial support from the National Natural Science Foundation of China (21463001). J.Y. is grateful for financial support from the Max Planck Society, Germany, Clarkson University, USA, and the ERC (European Research Council) Starting Grant (Project Number 639720-NAPOLI).
    Publisher
    American Chemical Society (ACS)
    Journal
    ACS Nano
    DOI
    10.1021/acsnano.7b01946
    arXiv
    1705.03756
    Additional Links
    http://pubs.acs.org/doi/abs/10.1021/acsnano.7b01946
    ae974a485f413a2113503eed53cd6c53
    10.1021/acsnano.7b01946
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.