Show simple item record

dc.contributor.authorBelmabkhout, Youssef
dc.contributor.authorPillai, Renjith S.
dc.contributor.authorAlezi, Dalal
dc.contributor.authorShekhah, Osama
dc.contributor.authorBhatt, Prashant
dc.contributor.authorChen, Zhijie
dc.contributor.authorAdil, Karim
dc.contributor.authorVaesen, Sebastien
dc.contributor.authorDe Weireld, Guy
dc.contributor.authorPang, Maolin
dc.contributor.authorSuetin, Mikhail
dc.contributor.authorCairns, Amy
dc.contributor.authorSolovyeva, Vera
dc.contributor.authorShkurenko, Aleksander
dc.contributor.authorEl Tall, Omar
dc.contributor.authorMaurin, Guillaume
dc.contributor.authorEddaoudi, Mohamed
dc.date.accessioned2017-05-31T11:23:10Z
dc.date.available2017-05-31T11:23:10Z
dc.date.issued2017
dc.identifier.citationBelmabkhout Y, Pillai RS, Alezi D, Shekhah O, Bhatt PM, et al. (2017) Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S. J Mater Chem A 5: 3293–3303. Available: http://dx.doi.org/10.1039/c6ta09406f.
dc.identifier.issn2050-7488
dc.identifier.issn2050-7496
dc.identifier.doi10.1039/c6ta09406f
dc.identifier.urihttp://hdl.handle.net/10754/623867
dc.description.abstractA cooperative experimental/modeling strategy was used to unveil the structure/gas separation performance relationship for a series of isostructural metal-organic frameworks (MOFs) with soc-topology (square-octahedral) hosting different extra-framework counter ions (NO3-, Cl- and Br-). In3+-, Fe3+-, Ga3+-and the newly isolated Al(III)-based isostructural soc-MOF were extensively studied and evaluated for the separation-based production of high-quality fuels (i.e., CH4, C3H8 and n-C4H10) and olefins. The structural/chemical fine-tuning of the soc-MOF platform promoted equilibrium-based selectivity toward C2+ (C2H6, C2H4, C3H6 C3H8 and n-C4H10) and conferred the desired chemical stability toward H2S. The noted dual chemical stability and gas/vapor selectivity, which have rarely been reported for equilibrium-based separation agents, are essential for the production of high-purity H-2, CH4 and C2+ fractions in high yields. Interestingly, the evaluated soc-MOF analogues exhibited high selectivity for C2H4, C3H6 and n-C4H10. In particular, the Fe, Ga and Al analogues presented relatively enhanced C2+/CH4 adsorption selectivities. Notably, the Ga and Al analogues were found to be technically preferable because their structural integrities and separation performances were maintained upon exposure to H2S, indicating that these materials are highly tolerant to H2S. Therefore, the Ga-soc-MOF was further examined for the selective adsorption of H2S in the presence of CO2-and CH4-containing streams, such as refinery-off gases (ROG) and natural gas (NG). Grand canonical Monte Carlo (GCMC) simulations based on a specific force field describing the interactions between the guest molecules and the Ga sites supported and confirmed the considerably higher affinity of the Ga-soc-MOF for C2+ (as exemplified by n-C4H10) than for CH4. The careful selection of an appropriate metal for the trinuclear inorganic molecular building block (MBB), i. e., a Ga metal center, imbues the soc-MOF platform with the requisite hydrolytic stability, H2S stability, and exceptional gas selectivity for ROG and NG upgrading. Finally, the soc-MOF was deployed as a continuous film on a porous support, and its gas permeation properties as a membrane were evaluated.
dc.description.sponsorshipThe authors gratefully acknowledge Internal KAUST FUND FCC/1/1972-8-01. Y. B., P. M. B. and M. E. thank the Aramco-sponsored research fund (contract. 66600024505). R. S. P. and G. M. thank KAUST for providing funding (contract 146040). We would like to acknowledge Dr Hamad Feras from Aramco R&D for his help in performing the initial evaluation of the H<INF>2</INF>S/CO<INF>2</INF>/CH<INF>4</INF> mixtures.
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.urlhttp://pubs.rsc.org/en/Content/ArticleLanding/2017/TA/C6TA09406F#!divAbstract
dc.titleMetal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S
dc.typeArticle
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.contributor.departmentAnalytical Chemistry Core Lab
dc.contributor.departmentChemical Science Program
dc.contributor.departmentFunctional Materials Design, Discovery and Development (FMD3)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentSolids
dc.contributor.departmentTechnology Transfer
dc.identifier.journalJ. Mater. Chem. A
dc.contributor.institutionInstitut Charles Gerhardt Montpellier UMR 5253 CNRS, Université Montpellier, Place E. Bataillon, Montpellier cedex 05, 34095, France
dc.contributor.institutionThermodynamics Department, Faculty of Engineering, University of Mons, 20, Place du Parc, Mons, 7000, Belgium
kaust.personBelmabkhout, Youssef
kaust.personAlezi, Dalal
kaust.personShekhah, Osama
kaust.personBhatt, Prashant
kaust.personChen, Zhijie
kaust.personAdil, Karim
kaust.personPang, Maolin
kaust.personSuetin, Mikhail
kaust.personCairns, Amy
kaust.personSolovyeva, Vera
kaust.personShkurenko, Aleksander
kaust.personEl Tall, Omar
kaust.personEddaoudi, Mohamed
kaust.grant.numberFCC/1/1972-8-01
kaust.grant.number146040
dc.relation.issupplementedbyDOI:10.5517/ccdc.csd.cc1mq5dx
display.relations<b>Is Supplemented By:</b><br/> <ul><li><i>[Dataset]</i> <br/> Belmabkhout, Y., Pillai, R. S., Alezi, D., Shekhah, O., Bhatt, P. M., Chen, Z., Adil, K., Vaesen, S., De Weireld, G., Pang, M., Suetin, M., Cairns, A. J., Solovyeva, V., Shkurenko, A., El Tall, O., Maurin, G., &amp; Eddaoudi, M. (2017). <i>CCDC 1510859: Experimental Crystal Structure Determination</i> [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/CCDC.CSD.CC1MQ5DX. DOI: <a href="https://doi.org/10.5517/ccdc.csd.cc1mq5dx" >10.5517/ccdc.csd.cc1mq5dx</a> Handle: <a href="http://hdl.handle.net/10754/663753" >10754/663753</a></a></li></ul>


This item appears in the following Collection(s)

Show simple item record