• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Large-eddy simulation of flow over a cylinder with from to : a skin-friction perspective

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Cheng, Wan
    Pullin, D. I.
    Samtaney, Ravi cc
    Zhang, W.
    Gao, Wei cc
    KAUST Department
    Fluid and Plasma Simulation Group (FPS)
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    KAUST Grant Number
    URF/1/1394-01
    URF/1/1394-01
    Date
    2017-05-05
    Online Publication Date
    2017-05-05
    Print Publication Date
    2017-06
    Permanent link to this record
    http://hdl.handle.net/10754/623860
    
    Metadata
    Show full item record
    Abstract
    We present wall-resolved large-eddy simulations (LES) of flow over a smooth-wall circular cylinder up to , where is Reynolds number based on the cylinder diameter and the free-stream speed . The stretched-vortex subgrid-scale (SGS) model is used in the entire simulation domain. For the sub-critical regime, six cases are implemented with . Results are compared with experimental data for both the wall-pressure-coefficient distribution on the cylinder surface, which dominates the drag coefficient, and the skin-friction coefficient, which clearly correlates with the separation behaviour. In the super-critical regime, LES for three values of are carried out at different resolutions. The drag-crisis phenomenon is well captured. For lower resolution, numerical discretization fluctuations are sufficient to stimulate transition, while for higher resolution, an applied boundary-layer perturbation is found to be necessary to stimulate transition. Large-eddy simulation results at , with a mesh of , agree well with the classic experimental measurements of Achenbach (J. Fluid Mech., vol. 34, 1968, pp. 625-639) especially for the skin-friction coefficient, where a spike is produced by the laminar-turbulent transition on the top of a prior separation bubble. We document the properties of the attached-flow boundary layer on the cylinder surface as these vary with . Within the separated portion of the flow, mean-flow separation-reattachment bubbles are observed at some values of , with separation characteristics that are consistent with experimental observations. Time sequences of instantaneous surface portraits of vector skin-friction trajectory fields indicate that the unsteady counterpart of a mean-flow separation-reattachment bubble corresponds to the formation of local flow-reattachment cells, visible as coherent bundles of diverging surface streamlines.
    Citation
    Cheng W, Pullin DI, Samtaney R, Zhang W, Gao W (2017) Large-eddy simulation of flow over a cylinder with from to : a skin-friction perspective. Journal of Fluid Mechanics 820: 121–158. Available: http://dx.doi.org/10.1017/jfm.2017.172.
    Sponsors
    W.C. and R.S. were supported by the KAUST Office of Competitive Research Funds (OCRF) under award no. URF/1/1394-01. D.I.P. was partially supported under KAUST OCRF award no. URF/1/1394-01 and partially by NSF award CBET 1235605. The Cray XC40, Shaheen, at KAUST was utilized for all of the reported LES.
    Publisher
    Cambridge University Press (CUP)
    Journal
    Journal of Fluid Mechanics
    DOI
    10.1017/jfm.2017.172
    Additional Links
    https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/largeeddy-simulation-of-flow-over-a-cylinder-with-red-from-39times-103-to-85times-105-a-skinfriction-perspective/22AFE6775E5449F769DF5653089CFE0A
    ae974a485f413a2113503eed53cd6c53
    10.1017/jfm.2017.172
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.