Type
ArticleAuthors
Lu, Ang-YuZhu, Hanyu

Xiao, Jun
Chuu, Chih-Piao
Han, Yimo
Chiu, Ming-Hui

Cheng, Chia-Chin
Yang, Chih-Wen

Wei, Kung-Hwa
Yang, Yiming
Wang, Yuan

Sokaras, Dimosthenis
Nordlund, Dennis
Yang, Peidong
Muller, David A.

Chou, Mei-Yin
Zhang, Xiang

Li, Lain-Jong

KAUST Department
Material Science and Engineering ProgramPhysical Science and Engineering (PSE) Division
Date
2017-05-15Online Publication Date
2017-05-15Print Publication Date
2017-08Permanent link to this record
http://hdl.handle.net/10754/623858
Metadata
Show full item recordAbstract
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.Citation
Lu A-Y, Zhu H, Xiao J, Chuu C-P, Han Y, et al. (2017) Janus monolayers of transition metal dichalcogenides. Nature Nanotechnology. Available: http://dx.doi.org/10.1038/nnano.2017.100.Sponsors
L.-J.L. acknowledges support from the King Abdullah University of Science and Technology (Saudi Arabia), the Ministry of Science and Technology (MOST), the Taiwan Consortium of Emergent Crystalline Materials (TCECM), Academia Sinica (Taiwan) and Asian Office of Aerospace Research & Development (AOARD) under contract no. FA2386-15-1-0001 (USA). C.-P.C. and M.Y.C. acknowledge support from the Thematic Project of Academia Sinica. M.Y.C. acknowledges support from the National Science Foundation (NSF, grant no. 1542747). X.Z. acknowledges support from the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under contract no. DE-AC02-05-CH11231 (van der Waals heterostructures programme, KCWF16) for PFM imaging and analysis; and Samsung Electronics for nonlinear optical characterization. Y.H. and D.A.M. were supported by the Cornell Center for Materials Research, NSF MRSEC (DMR-1120296) and NSF grant no. MRI-1429155. P.Y. acknowledges support from the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231 (PChem KC3103).Publisher
Springer NatureJournal
Nature NanotechnologyPubMed ID
28507333ae974a485f413a2113503eed53cd6c53
10.1038/nnano.2017.100
Scopus Count
Related articles
- Second harmonic generation in Janus MoSSe a monolayer and stacked bulk with vertical asymmetry.
- Authors: Wei Y, Xu X, Wang S, Li W, Jiang Y
- Issue date: 2019 Oct 7
- Symmetry-breaking induced large piezoelectricity in Janus tellurene materials.
- Authors: Chen Y, Liu J, Yu J, Guo Y, Sun Q
- Issue date: 2019 Jan 17
- Enhancement of van der Waals Interlayer Coupling through Polar Janus MoSSe.
- Authors: Zhang K, Guo Y, Ji Q, Lu AY, Su C, Wang H, Puretzky AA, Geohegan DB, Qian X, Fang S, Kaxiras E, Kong J, Huang S
- Issue date: 2020 Oct 14
- Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
- Authors: Heine T
- Issue date: 2015 Jan 20
- Classifying the Electronic and Optical Properties of Janus Monolayers.
- Authors: Riis-Jensen AC, Deilmann T, Olsen T, Thygesen KS
- Issue date: 2019 Nov 26