Show simple item record

dc.contributor.authorZaouri, Noor A.
dc.contributor.authorGutierrez, Leonardo
dc.contributor.authorDramas, Laure
dc.contributor.authorGarces, Daniel
dc.contributor.authorCroue, Jean-Philippe
dc.date.accessioned2017-05-31T11:23:09Z
dc.date.available2017-05-31T11:23:09Z
dc.date.issued2017-03-21
dc.identifier.citationZaouri N, Gutierrez L, Dramas L, Garces D, Croue J-P (2017) Interfacial interactions between Skeletonema costatum extracellular organic matter and metal oxides: Implications for ceramic membrane filtration. Water Research 116: 194–202. Available: http://dx.doi.org/10.1016/j.watres.2017.03.034.
dc.identifier.issn0043-1354
dc.identifier.doi10.1016/j.watres.2017.03.034
dc.identifier.urihttp://hdl.handle.net/10754/623855
dc.description.abstractIn the current study, the interfacial interactions between the high molecular weight (HMW) compounds of Skeletonema costatum (SKC) extracellular organic matter (EOM) and ZrO2 or Al2O3, were investigated by atomic force microscopy (AFM). HMW SKC-EOM was rigorously characterized and described as a hydrophilic organic compound mainly comprised of polysaccharide-like structures. Lipids and proteins were also observed, although in lower abundance. HMW SKC-EOM displayed attractive forces during approaching (i.e., leading to jump-to-contact events) and adhesion forces during retracting regime to both metal oxides at all solution conditions tested, where electrostatics and hydrogen bonding were suggested as dominant interacting mechanisms. However, the magnitude of these forces was significantly higher on ZrO2 surfaces, irrespective of cation type (Na+ or Ca2+) or concentration. Interestingly, while HMW SKC-EOM interacting forces to Al2O3 were practically insensitive to solution chemistry, the interactions between ZrO2 and HMW SKC-EOM increased with increasing cation concentration in solution. The structure, and lower charge, hydrophilicity, and density of hydroxyl groups on ZrO2 surface would play a key role on favoring zirconia associations with HMW SKC-EOM. The current results contribute to advance our fundamental understanding of Algogenic Organic Matter (AOM) interfacial interactions with metal oxides (i.e., AOM membrane fouling), and would highly assist in the proper selection of membrane material during episodic algal blooms.
dc.description.sponsorshipThe authors are grateful to the funding from King Abdullah University of Science and Technology (KAUST).
dc.publisherElsevier BV
dc.relation.urlhttp://www.sciencedirect.com/science/article/pii/S0043135417302117
dc.subjectAtomic force microscopy
dc.subjectInterfacial interactions
dc.subjectMetal oxides
dc.subjectSkeletonema costatum extracellular organic matter
dc.titleInterfacial interactions between Skeletonema costatum extracellular organic matter and metal oxides: Implications for ceramic membrane filtration
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentEnvironmental Science and Engineering Program
dc.contributor.departmentWater Desalination and Reuse Research Center (WDRC)
dc.identifier.journalWater Research
dc.contributor.institutionCurtin Water Quality Research Centre, Department of Chemistry, Curtin University, Australia
dc.contributor.institutionFacultad del Mar y Medio Ambiente, Universidad Del Pacifico, Guayaquil, Ecuador
dc.contributor.institutionEscuela Superior Politécnica del Litoral, Facultad de Ingeniería en Ciencias de la Tierra, Ecuador
kaust.personZaouri, Noor A
kaust.personDramas, Laure
kaust.personCroue, Jean-Philippe
dc.date.published-online2017-03-21
dc.date.published-print2017-06


This item appears in the following Collection(s)

Show simple item record