Type
ArticleKAUST Department
Computational Physics and Materials Science (CPMS)Material Science and Engineering Program
Physical Science and Engineering (PSE) Division
Date
2017-01-24Online Publication Date
2017-01-24Print Publication Date
2017-02-02Permanent link to this record
http://hdl.handle.net/10754/623854
Metadata
Show full item recordAbstract
We analyze the structural and electronic properties of graphene with high density monovacancies by first-principles and cluster expansion calculations in order to establish fundamental insights into the interaction between monovacancies in such conditions. The highest possible defect density is observed to exceed 7.1 atom% and, on the other hand, is bounded by 12.5 atom%. We demonstrate that the structural stability is controlled by the density of dangling bonds within a structure, for which we apply density functional tight bonding molecular dynamics calculations. Cluster expansion calculations are employed to determine the ground state structures as a function of the defect density. We observe a tendency of the monovacancies to form lines. Band structures and densities of states are calculated to evaluate the electronic properties. We find that the band dispersions around the Fermi energy are enhanced for increasing defect density, which indicates that the carrier mobility can be well controlled by means of this parameter.Citation
Shi Z, Schwingenschlögl U (2017) Interaction of Monovacancies in Graphene. The Journal of Physical Chemistry C 121: 2459–2465. Available: http://dx.doi.org/10.1021/acs.jpcc.6b10910.Sponsors
The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). For computer time, this research used the resources of the Supercomputing Laboratory at KAUST. This publication was made possible by a National Priorities Research Program grant (NPRP 7-665-1-125) from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.Publisher
American Chemical Society (ACS)Additional Links
http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b10910ae974a485f413a2113503eed53cd6c53
10.1021/acs.jpcc.6b10910