Show simple item record

dc.contributor.authorHajjaj, Amal
dc.contributor.authorRamini, Abdallah
dc.contributor.authorAlcheikh, Nouha
dc.contributor.authorYounis, Mohammad I.
dc.date.accessioned2017-05-31T11:23:08Z
dc.date.available2017-05-31T11:23:08Z
dc.date.issued2017-03-18
dc.identifier.citationHajjaj AZ, Ramini A, Alcheikh N, Younis MI (2017) Electrothermally Tunable Arch Resonator. Journal of Microelectromechanical Systems: 1–9. Available: http://dx.doi.org/10.1109/JMEMS.2017.2676006.
dc.identifier.issn1057-7157
dc.identifier.issn1941-0158
dc.identifier.doi10.1109/JMEMS.2017.2676006
dc.identifier.urihttp://hdl.handle.net/10754/623828
dc.description.abstractThis paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291]
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttp://ieeexplore.ieee.org/document/7880562/
dc.subjectelectrothermal actuation.
dc.subjectTunability
dc.subjectarch resonator
dc.titleElectrothermally Tunable Arch Resonator
dc.typeArticle
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalJournal of Microelectromechanical Systems
kaust.personHajjaj, Amal Z.
kaust.personRamini, Abdallah
kaust.personAlcheikh, Nouha
kaust.personYounis, Mohammad I.
dc.date.published-online2017-03-18
dc.date.published-print2017-08


This item appears in the following Collection(s)

Show simple item record