• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Electrothermally Tunable Arch Resonator

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Hajjaj, Amal cc
    Ramini, Abdallah
    Alcheikh, Nouha cc
    Younis, Mohammad I. cc
    KAUST Department
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2017-03-18
    Online Publication Date
    2017-03-18
    Print Publication Date
    2017-08
    Permanent link to this record
    http://hdl.handle.net/10754/623828
    
    Metadata
    Show full item record
    Abstract
    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291]
    Citation
    Hajjaj AZ, Ramini A, Alcheikh N, Younis MI (2017) Electrothermally Tunable Arch Resonator. Journal of Microelectromechanical Systems: 1–9. Available: http://dx.doi.org/10.1109/JMEMS.2017.2676006.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    Journal of Microelectromechanical Systems
    DOI
    10.1109/JMEMS.2017.2676006
    Additional Links
    http://ieeexplore.ieee.org/document/7880562/
    ae974a485f413a2113503eed53cd6c53
    10.1109/JMEMS.2017.2676006
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.