A cytosolic Ezh1 isoform modulates a PRC2–Ezh1 epigenetic adaptive response in postmitotic cells
Type
ArticleAuthors
Bodega, BeatriceMarasca, Federica
Ranzani, Valeria
Cherubini, Alessandro
Valle, Francesco Della
Neguembor, Maria Victoria
Wassef, Michel
Zippo, Alessio
Lanzuolo, Chiara
Pagani, Massimiliano
Orlando, Valerio

KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionBioscience Program
Date
2017-03-27Online Publication Date
2017-03-27Print Publication Date
2017-05Permanent link to this record
http://hdl.handle.net/10754/623777
Metadata
Show full item recordAbstract
The evolution of chromatin-based epigenetic cell memory may be driven not only by the necessity for cells to stably maintain transcription programs, but also by the need to recognize signals and allow plastic responses to environmental stimuli. The mechanistic role of the epigenome in adult postmitotic tissues, however, remains largely unknown. In vertebrates, two variants of the Polycomb repressive complex (PRC2-Ezh2 and PRC2-Ezh1) control gene silencing via methylation of histone H3 on Lys27 (H3K27me). Here we describe a reversible mechanism that involves a novel isoform of Ezh1 (Ezh1β). Ezh1β lacks the catalytic SET domain and acts in the cytoplasm of skeletal muscle cells to control nuclear PRC2-Ezh1 activity in response to atrophic oxidative stress, by regulating Eed assembly with Suz12 and Ezh1α (the canonical isoform) at their target genes. We report a novel PRC2-Ezh1 function that utilizes Ezh1β as an adaptive stress sensor in the cytoplasm, thus allowing postmitotic cells to maintain tissue integrity in response to environmental changes.Citation
Bodega B, Marasca F, Ranzani V, Cherubini A, Della Valle F, et al. (2017) A cytosolic Ezh1 isoform modulates a PRC2–Ezh1 epigenetic adaptive response in postmitotic cells. Nature Structural & Molecular Biology 24: 444–452. Available: http://dx.doi.org/10.1038/nsmb.3392.Sponsors
We are grateful to C. Desplan, P. Sassone-Corsi, D. Gabellini, E. Battaglioli and S. Biffo for discussions and critical revision of the manuscript; G. Natoli (IFOM-IEO Campus, Milan, Italy) for sharing the Jmjd3 antibody; M. Mora (“Cells, tissues and DNA from patients with neuromuscular diseases” Telethon Biobank, Milan, Italy) for providing human primary myoblasts; R. Margueron (Institute Curie, Paris, France) for providing pCDNA-4TO-Ezh1α-HA plasmid; Sequentia Biotech SL, R. Bonnal and C. Cheroni for bioinformatical support; and M. Moro and M.C. Crosti for technical assistance with cell sorting. This work was supported by the EPIGEN Italian flagship program and King Abdullah University of Science and Technology (KAUST) (to V.O.).Publisher
Springer NatureAdditional Links
http://www.nature.com/nsmb/journal/vaop/ncurrent/full/nsmb.3392.htmlae974a485f413a2113503eed53cd6c53
10.1038/nsmb.3392