Efficient Disk-Based Techniques for Manipulating Very Large String Databases
Type
DissertationAuthors
Allam, Amin
Advisors
Kalnis, Panos
Committee members
Gao, Xin
Moshkov, Mikhail

Mokbel, Mohamed
Program
Computer ScienceDate
2017-05-18Permanent link to this record
http://hdl.handle.net/10754/623691
Metadata
Show full item recordAbstract
Indexing and processing strings are very important topics in database management. Strings can be database records, DNA sequences, protein sequences, or plain text. Various string operations are required for several application categories, such as bioinformatics and entity resolution. When the string count or sizes become very large, several state-of-the-art techniques for indexing and processing such strings may fail or behave very inefficiently. Modifying an existing technique to overcome these issues is not usually straightforward or even possible. A category of string operations can be facilitated by the suffix tree data structure, which basically indexes a long string to enable efficient finding of any substring of the indexed string, and can be used in other operations as well, such as approximate string matching. In this document, we introduce a novel efficient method to construct the suffix tree index for very long strings using parallel architectures, which is a major challenge in this category. Another category of string operations require clustering similar strings in order to perform application-specific processing on the resulting possibly-overlapping clusters. In this document, based on clustering similar strings, we introduce a novel efficient technique for record linkage and entity resolution, and a novel method for correcting errors in a large number of small strings (read sequences) generated by the DNA sequencing machines.Citation
Allam, A. (2017). Efficient Disk-Based Techniques for Manipulating Very Large String Databases. KAUST Research Repository. https://doi.org/10.25781/KAUST-58MOXae974a485f413a2113503eed53cd6c53
10.25781/KAUST-58MOX