Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing
Type
ArticleKAUST Department
Chemical Science ProgramFunctional Nanomaterials Lab (FuNL)
KAUST Catalysis Center (KCC)
KAUST Solar Center (KSC)
Material Science and Engineering Program
Physical Science and Engineering (PSE) Division
Ultrafast Laser Spectroscopy and Four-dimensional Electron Imaging Research Group
Date
2017-03-30Online Publication Date
2017-03-30Print Publication Date
2017-04-14Permanent link to this record
http://hdl.handle.net/10754/623679
Metadata
Show full item recordAbstract
Low-dimensional-networked (low-DN) perovskite derivatives are bulk quantum materials in which charge carriers are localized within ordered metal halide sheets, rods, or clusters that are separated by cationic lattices. After two decades of hibernation, this class of semiconductors reemerged in the past two years, largely catalyzed by the interest in alternative, more stable absorbers to CH3NH3PbI3-type perovskites in photovoltaics. Whether low-DN perovskites will surpass other photovoltaic technologies remains to be seen, but their impressively high photo- and electroluminescence yields have already set new benchmarks in light emission applications. Here we offer our perspective on the most exciting advances in materials design of low-DN perovskites for energy- and optoelectronic-related applications. The next few years will usher in an explosive growth in this tribe of quantum materials, as only a few members have been synthesized, while the potential library of compositions and structures is believed to be much larger and is yet to be discovered.Citation
Saidaminov MI, Mohammed OF, Bakr OM (2017) Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing. ACS Energy Letters 2: 889–896. Available: http://dx.doi.org/10.1021/acsenergylett.6b00705.Sponsors
The authors acknowledge the support of King Abdullah University of Science and Technology (KAUST).Publisher
American Chemical Society (ACS)Journal
ACS Energy LettersAdditional Links
http://pubs.acs.org/doi/abs/10.1021/acsenergylett.6b00705ae974a485f413a2113503eed53cd6c53
10.1021/acsenergylett.6b00705