Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

Abstract
The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

Citation
Thu K, Saththasivam J, Saha BB, Chua KJ, Srinivasa Murthy S, et al. (2017) Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures. Applied Thermal Engineering. Available: http://dx.doi.org/10.1016/j.applthermaleng.2017.05.091.

Acknowledgements
The authors gratefully acknowledge the Kyushu University Program for Leading Graduate School, Green Asia Education Center and the National Research Foundation (NRF), Singapore, under the research grant (R-265-000-466-281) for their financial support to conduct this study.

Publisher
Elsevier BV

Journal
Applied Thermal Engineering

DOI
10.1016/j.applthermaleng.2017.05.091

Additional Links
http://www.sciencedirect.com/science/article/pii/S1359431117321531

Permanent link to this record