Show simple item record

dc.contributor.authorLitvinenko, Alexander
dc.contributor.authorGenton, Marc G.
dc.contributor.authorSun, Ying
dc.date.accessioned2017-05-16T08:21:21Z
dc.date.available2017-05-16T08:21:21Z
dc.date.issued2015-11-30
dc.identifier.urihttp://hdl.handle.net/10754/623623
dc.description.abstractWe approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.
dc.description.sponsorshipECRC, KAUST
dc.subjectMatern covariance
dc.subjecthierarchical matrices
dc.subjectdata compression
dc.subjectloglikelihood surrogate
dc.subjectMLE method
dc.subjectParameter Estimation
dc.titleHierarchical matrix approximation of large covariance matrices
dc.typePoster
dc.contributor.departmentECRC, KAUST
dc.contributor.departmentSpatio-temporal statistics & Data science, KAUST
dc.contributor.departmentEnvironmental Statistics Group, KAUST
dc.conference.dateNovember 2015
dc.conference.nameECRC Advisory Board Meeting, KAUST
dc.conference.locationKAUST, B1
refterms.dateFOA2018-06-13T15:30:35Z


Files in this item

Thumbnail
Name:
poster_litvinenko_adv_board.pdf
Size:
548.5Kb
Format:
PDF
Description:
Identification of hyper-parameters of Matern covariance function via Hierarchical matrix technique

This item appears in the following Collection(s)

Show simple item record