• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Transport and structural characterization of solution-processable doped ZnO nanowires

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Noriega, Rodrigo
    Goris, Ludwig
    Rivnay, Jonathan
    Scholl, Jonathan
    Thompson, Linda M.
    Palke, Aaron C.
    Stebbins, Jonathan F.
    Salleo, Alberto
    Date
    2009-08-18
    Online Publication Date
    2009-08-18
    Print Publication Date
    2009-08-20
    Permanent link to this record
    http://hdl.handle.net/10754/623612
    
    Metadata
    Show full item record
    Abstract
    The use of ZnO nanowires has become a widespread topic of interest in optoelectronics. In order to correctly assess the quality, functionality, and possible applications of such nanostructures it is important to accurately understand their electrical and optical properties. Aluminum- and gallium-doped crystalline ZnO nanowires were synthesized using a low-temperature solution-based process, achieving dopant densities of the order of 1020 cm-3. A non-contact optical technique, photothermal deflection spectroscopy, is used to characterize ensembles of ZnO nanowires. By modeling the free charge carrier absorption as a Drude metal, we are able to calculate the free carrier density and mobility. Determining the location of the dopant atoms in the ZnO lattice is important to determine the doping mechanisms of the ZnO nanowires. Solid-state NMR is used to distinguish between coordination environments of the dopant atoms.
    Citation
    Noriega R, Goris L, Rivnay J, Scholl J, Thompson LM, et al. (2009) Transport and structural characterization of solution-processable doped ZnO nanowires. Nanoscale Photonic and Cell Technologies for Photovoltaics II. Available: http://dx.doi.org/10.1117/12.826204.
    Sponsors
    This research was supported by the King Abdullah University of Science and Technology (KAUST): Global Research Partnership (GRP) through the Center for Advanced Molecular Photovoltaics (CAMP), the Global Climate and Energy Project (GCEP) through Stanford University and the Department of Energy (Solar America Initiative).
    Publisher
    SPIE-Intl Soc Optical Eng
    Journal
    Nanoscale Photonic and Cell Technologies for Photovoltaics II
    Conference/Event name
    Nanoscale Photonic and Cell Technologies for Photovoltaics II
    DOI
    10.1117/12.826204
    ae974a485f413a2113503eed53cd6c53
    10.1117/12.826204
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.