• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Transparent electrode designs based on optimal nano-patterning of metallic films

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Catrysse, Peter B.
    Fan, Shanhui
    KAUST Grant Number
    KUSC1-015-21
    Date
    2010-09-10
    Online Publication Date
    2010-09-10
    Print Publication Date
    2010-08-19
    Permanent link to this record
    http://hdl.handle.net/10754/623611
    
    Metadata
    Show full item record
    Abstract
    Transparent conductive electrodes are critical to the operation of optoelectronic devices, such as photovoltaic cells and light emitting diodes. Effective electrodes need to combine excellent electrical and optical properties. Metal oxides, such as indium tin oxide, are commonly used. There is substantial interest in replacing them, however, motivated by practical problems and recent discoveries regarding the optics of nano-patterned metals. When designing nano-patterned metallic films for use as electrodes, one needs to account for both optical and electrical properties. In general, it is insufficient to optimize nano-structured films based upon optical properties alone, since structural variations will also affect the electrical properties. In this work, we investigate the need for simultaneous optical and electrical performance by analyzing the optical properties of a class of nano-patterned metallic electrodes that is obtained by a constant-sheet-resistance transformation. Within such a class the electrical and optical properties can be separated, i.e., the sheet resistance can be kept constant and the transmittance can be optimized independently. For simple one-dimensional periodic patterns with constant sheet-resistance, we find a transmission maximum (polarization-averaged) when the metal sections are narrow (< 40 nm, ~ 10% metal fill-factor) and tall (> 100 nm). Our design carries over to more complex two-dimensional (2D) patterns. This is significant as there are no previous reports regarding numerical studies on the optical and electrical properties of 2D nano-patterns in the context of electrode design.
    Citation
    Catrysse PB, Fan S (2010) Transparent electrode designs based on optimal nano-patterning of metallic films. Plasmonics: Metallic Nanostructures and Their Optical Properties VIII. Available: http://dx.doi.org/10.1117/12.860998.
    Sponsors
    The authors thank J.-Y. Lee and P. Peumans for bringing this problem to their attention. This work was supported by the Center for Advanced Molecular Photovoltaics (CAMP) under Award No KUSC1-015-21 made by the King Abdullah University of Science and Technology, and by DOE Grant No. DE-FG02-07ER46426. The computation is performed through the support of NSF-LRAC program.
    Publisher
    SPIE-Intl Soc Optical Eng
    Journal
    Plasmonics: Metallic Nanostructures and Their Optical Properties VIII
    Conference/Event name
    Plasmonics: Metallic Nanostructures and Their Optical Properties VIII
    DOI
    10.1117/12.860998
    ae974a485f413a2113503eed53cd6c53
    10.1117/12.860998
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.