• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    The impact of reactants composition and temperature on the flow structure in a wake stabilized laminar lean premixed CH4/H2/air flames; mechanism and scaling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Michaels, D.
    Shanbhogue, S.J. cc
    Ghoniem, A.F.
    KAUST Grant Number
    KUS-110-010-01
    Date
    2016-11-11
    Online Publication Date
    2016-11-11
    Print Publication Date
    2017-02
    Permanent link to this record
    http://hdl.handle.net/10754/623606
    
    Metadata
    Show full item record
    Abstract
    In this paper we investigate the role of reactants composition and temperature in defining the steady flow structure in bluff body stabilized premixed flames. The study was motivated by experiments which showed that the flow structure and stability map for different fuels and inlet conditions collapse using the extinction strain rate as the chemical time scale. The investigation is conducted using a laminar lean premixed flame stabilized on a heat conducting bluff-body. Calculations are performed for a wide range of mixtures of CH4/H2/air (0.35 ≤ ϕ ≤ 0.75, 0 ≤ %H2 ≤ 40, 300 ≤ Tin [K] ≤ 500) in order to systematically vary the burning velocity (2.0–35.6 cm/s), dilatation ratio (2.7–6.4), and extinction strain rate (106–2924 1/s). The model is based on a fully resolved unsteady two-dimensional flow with detailed chemistry and species transport, and with no artificial flame anchoring boundary conditions. Calculations reveal that the recirculation zone length correlates with a chemical time scale based on the flame extinction strain rate corresponding to the inlet fuel composition, stoichiometry, pressure and temperature; and are consistent with experimental data in literature. It was found that in the wake region the flame is highly stretched and its location and interaction with the flow is governed by the reactants combustion characteristics under high strain.
    Citation
    Michaels D, Shanbhogue SJ, Ghoniem AF (2017) The impact of reactants composition and temperature on the flow structure in a wake stabilized laminar lean premixed CH 4 /H 2 /air flames; mechanism and scaling. Combustion and Flame 176: 151–161. Available: http://dx.doi.org/10.1016/j.combustflame.2016.10.007.
    Sponsors
    This work was supported partly by a MIT-Technion fellowship to Dan Michaels and partly by KAUST grant number KUS-110-010-01.
    Publisher
    Elsevier BV
    Journal
    Combustion and Flame
    DOI
    10.1016/j.combustflame.2016.10.007
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.combustflame.2016.10.007
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.