• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Rough-wall turbulent boundary layers with constant skin friction

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Sridhar, A. cc
    Pullin, D. I.
    Cheng, W. cc
    KAUST Grant Number
    URF/1/1394-01
    Date
    2017-03-28
    Online Publication Date
    2017-03-28
    Print Publication Date
    2017-05
    Permanent link to this record
    http://hdl.handle.net/10754/623587
    
    Metadata
    Show full item record
    Abstract
    A semi-empirical model is presented that describes the development of a fully developed turbulent boundary layer in the presence of surface roughness with length scale ks that varies with streamwise distance x . Interest is centred on flows for which all terms of the von Kármán integral relation, including the ratio of outer velocity to friction velocity U+∞≡U∞/uτ , are streamwise constant. For Rex assumed large, use is made of a simple log-wake model of the local turbulent mean-velocity profile that contains a standard mean-velocity correction for the asymptotic fully rough regime and with assumed constant parameter values. It is then shown that, for a general power-law external velocity variation U∞∼xm , all measures of the boundary-layer thickness must be proportional to x and that the surface sand-grain roughness scale variation must be the linear form ks(x)=αx , where x is the distance from the boundary layer of zero thickness and α is a dimensionless constant. This is shown to give a two-parameter (m,α) family of solutions, for which U+∞ (or equivalently Cf ) and boundary-layer thicknesses can be simply calculated. These correspond to perfectly self-similar boundary-layer growth in the streamwise direction with similarity variable z/(αx) , where z is the wall-normal coordinate. Results from this model over a range of α are discussed for several cases, including the zero-pressure-gradient ( m=0 ) and sink-flow ( m=−1 ) boundary layers. Trends observed in the model are supported by wall-modelled large-eddy simulation of the zero-pressure-gradient case for Rex in the range 108−1010 and for four values of α . Linear streamwise growth of the displacement, momentum and nominal boundary-layer thicknesses is confirmed, while, for each α , the mean-velocity profiles and streamwise turbulent variances are found to collapse reasonably well onto z/(αx) . For given α , calculations of U+∞ obtained from large-eddy simulations are streamwise constant and independent of Rex when this is large. The present results suggest that, in the sense that U+∞(α,m) is constant, these flows can be interpreted as the fully rough limit for boundary layers in the presence of small-scale linear roughness.
    Citation
    Sridhar A, Pullin DI, Cheng W (2017) Rough-wall turbulent boundary layers with constant skin friction. Journal of Fluid Mechanics 818: 26–45. Available: http://dx.doi.org/10.1017/jfm.2017.132.
    Sponsors
    A.S. and D.I.P. were partially supported by the KAUST Office of Competitive Research Funds (OCRF) under award no. URF/1/1394-01 and partially by NSF award CBET 1235605. W.C. was supported by the KAUST OCRF under award no. URF/1/1394-01. The authors acknowledge helpful conversations with R. A. Antonia.
    Publisher
    Cambridge University Press (CUP)
    Journal
    Journal of Fluid Mechanics
    DOI
    10.1017/jfm.2017.132
    ae974a485f413a2113503eed53cd6c53
    10.1017/jfm.2017.132
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.