Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes
Type
ArticleDate
2017-01-05Online Publication Date
2017-01-05Print Publication Date
2017-01-19Permanent link to this record
http://hdl.handle.net/10754/623585
Metadata
Show full item recordAbstract
Two-dimensional (2D) materials that display robust ferromagnetism have been pursued intensively for nanoscale spintronic applications, but suitable candidates have not been identified. Here we present theoretical predictions on the design of ordered double-transition-metal MXene structures to achieve such a goal. On the basis of the analysis of electron filling in transition-metal cations and first-principles simulations, we demonstrate robust ferromagnetism in Ti2MnC2Tx monolayers regardless of the surface terminations (T = O, OH, and F), as well as in Hf2MnC2O2 and Hf2VC2O2 monolayers. The high magnetic moments (3–4 μB/unit cell) and high Curie temperatures (495–1133 K) of these MXenes are superior to those of existing 2D ferromagnetic materials. Furthermore, semimetal-to-semiconductor and ferromagnetic-to-antiferromagnetic phase transitions are predicted to occur in these materials in the presence of small or moderate tensile in-plane strains (0–3%), which can be externally applied mechanically or internally induced by the choice of transition metals.Citation
Dong L, Kumar H, Anasori B, Gogotsi Y, Shenoy VB (2017) Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes. The Journal of Physical Chemistry Letters 8: 422–428. Available: http://dx.doi.org/10.1021/acs.jpclett.6b02751.Sponsors
This work is supported by Grant W911NF-16-1-0447 from the Army Research Office. Part of this work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant ACI-1053575. L.D. thanks Dr. Junwen Li at National Institute of Standards and Technology for valuable discussions. B.A. was supported by King Abdullah University of Science and Technology under the KAUST-Drexel University Competitive Research Grant.Publisher
American Chemical Society (ACS)ae974a485f413a2113503eed53cd6c53
10.1021/acs.jpclett.6b02751