• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Numerical algebraic geometry for model selection and its application to the life sciences

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Gross, Elizabeth
    Davis, Brent
    Ho, Kenneth L.
    Bates, Daniel J.
    Harrington, Heather A. cc
    KAUST Grant Number
    KUK-C1-013-04
    Date
    2016-10-12
    Online Publication Date
    2016-10-12
    Print Publication Date
    2016-10
    Permanent link to this record
    http://hdl.handle.net/10754/623572
    
    Metadata
    Show full item record
    Abstract
    Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology.
    Citation
    Gross E, Davis B, Ho KL, Bates DJ, Harrington HA (2016) Numerical algebraic geometry for model selection and its application to the life sciences. Journal of The Royal Society Interface 13: 20160256. Available: http://dx.doi.org/10.1098/rsif.2016.0256.
    Sponsors
    E.G., K.L.H., D.J.B. and H.A.H. acknowledge funding from the American Institute of Mathematics (AIM). E.G. was supported by the US National Science Foundation grant DMS-1304167. B.D. was partially supported by NSF DMS-1115668. K.L.H. acknowledges support from NSF DMS-1203554. D.J.B. gratefully acknowledges partial support from NSF DMS-1115668, NSF ACI-1440467, and the Mathematical Biosciences Institute (MBI). H.A.H. gratefully acknowledges funding from AMS Simons Travel Grant, EPSRC Fellowship EP/K041096/1, King Abdullah University of Science and Technology (KAUST) KUK-C1-013-04 and MPH Stumpf Leverhulme Trust Grant.
    Publisher
    The Royal Society
    Journal
    Journal of The Royal Society Interface
    DOI
    10.1098/rsif.2016.0256
    ae974a485f413a2113503eed53cd6c53
    10.1098/rsif.2016.0256
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.