• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Pang, J.
    Theodorou, I. G.
    Centeno, A.
    Petrov, P. K.
    Alford, N. M.
    Ryan, M. P.
    Xie, F.
    Date
    2017
    Permanent link to this record
    http://hdl.handle.net/10754/623550
    
    Metadata
    Show full item record
    Abstract
    Metal enhanced fluorescence (MEF) is a physical effect through which the near-field interaction of fluorophores with metallic nanoparticles can lead to large fluorescence enhancement. MEF can be exploited in many fluorescence-based biomedical applications, with potentially significant improvement in detection sensitivity and contrast enhancement. Offering lower autofluorescence and minimal photoinduced damage, the development of effective and multifunctional MEF platforms in the near-infrared (NIR) region, is particularly desirable. In this work, the enhancement of NIR fluorescence caused by interaction with regular arrays of cylindrical gold (Au) nanoparticles (nanodiscs), fabricated through nanosphere lithography, is reported. Significant MEF of up to 235 times is obtained, with tuneable enhancement factors. The effect of array structure on fluorescence enhancement is investigated by semi-quantitatively de-convoluting excitation enhancement from emission enhancement, and modelling the local electric field enhancement. By considering arrays of Au nanodiscs with the same extinction maximum, it is shown that the excitation enhancement, due to increased electric field, is not significantly different for the particle sizes and separation distances considered. Rather, it is seen that the emission from the fluorophore is strongly enhanced, and is dependent on the topography, in particular particle size. The results show that the structural characteristics of Au nanodisc arrays can be manipulated to tune their enhancement factor, and hence their sensitivity.
    Citation
    Pang J, Theodorou IG, Centeno A, Petrov PK, Alford NM, et al. (2017) Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors. J Mater Chem C 5: 917–925. Available: http://dx.doi.org/10.1039/c6tc04965f.
    Sponsors
    J. P. and P. K. P. acknowledge King Abdulla University for Science and Technology's (KAUST) AEA Collaborative Research Program. I. G. T., A. C. and F. X. are supported by a British Council Newton Grant (#216239013). P. K. P., M. P. R., N. M. A. and F. X. acknowledge an EPSRC programme grant (EP/G060940/1). A. C. is also supported by a FRGS Grant (FRGS/2/2013/SG02/UTM/02/3) from the Malaysian Ministry of Education.
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    Journal of Materials Chemistry C
    DOI
    10.1039/c6tc04965f
    ae974a485f413a2113503eed53cd6c53
    10.1039/c6tc04965f
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.