• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Environmental controls on daytime net community calcification on a Red Sea reef flat

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bernstein, W. N. cc
    Hughen, K. A.
    Langdon, C.
    McCorkle, D. C.
    Lentz, S. J.
    KAUST Grant Number
    USA 00002
    KSA 00011
    Date
    2016-01-23
    Online Publication Date
    2016-01-23
    Print Publication Date
    2016-06
    Permanent link to this record
    http://hdl.handle.net/10754/623541
    
    Metadata
    Show full item record
    Abstract
    Coral growth and carbonate accumulation form the foundation of the coral reef ecosystem. Changes in environmental conditions due to coastal development, climate change, and ocean acidification may pose a threat to net carbonate production in the near future. Controlled laboratory studies demonstrate that calcification by corals and coralline algae is sensitive to changes in aragonite saturation state (Ωa), as well as temperature, light, and nutrition. Studies also show that the dissolution rate of carbonate substrates is impacted by changes in carbonate chemistry. The sensitivity of coral reefs to these parameters must be confirmed and quantified in the natural environment in order to predict how coral reefs will respond to local and global changes, particularly ocean acidification. We estimated the daytime hourly net community metabolic rates, both net community calcification (NCC) and net community productivity (NCP), at Sheltered Reef, an offshore platform reef in the central Red Sea. Average NCC was 8 ± 3 mmol m−2 h−1 in December 2010 and 11 ± 1 mmol m−2 h−1 in May 2011, and NCP was 21 ± 7 mmol m−2 h−1 in December 2010 and 44 ± 4 mmol m−2 h−1 in May 2011. We also monitored a suite of physical and chemical properties to help relate the rates at Sheltered Reef to published rates from other sites. While previous research shows that short-term field studies investigating the NCC–Ωa relationship have differing results due to confounding factors, it is important to continue estimating NCC in different places, seasons, and years, in order to monitor changes in NCC versus Ω in space and time, and to ultimately resolve a broader understanding of this relationship.
    Citation
    Bernstein WN, Hughen KA, Langdon C, McCorkle DC, Lentz SJ (2016) Environmental controls on daytime net community calcification on a Red Sea reef flat. Coral Reefs 35: 697–711. Available: http://dx.doi.org/10.1007/s00338-015-1396-6.
    Sponsors
    We would like to thank Craig Marquette, James Churchill, Pedro De La Torre, William Decarvalho, Jessica Masterman, Luke Mays, Elizabeth Bonk and Rebecca Belastock for assisting in sampling and analysis of samples. We would also like to thank Tom Farrar for providing files of surface irradiance and wind speed. This research was supported by Award No. USA 00002 and KSA 00011 to K. Hughen, D. McCorkle, and S. Lentz made by King Abdullah University of Science and Technology. This material is based upon work supported under a National Science Foundation Graduate Research Fellowship. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.
    Publisher
    Springer Nature
    Journal
    Coral Reefs
    DOI
    10.1007/s00338-015-1396-6
    ae974a485f413a2113503eed53cd6c53
    10.1007/s00338-015-1396-6
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.