• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Efficient and stable solution-processed planar perovskite solar cells via contact passivation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Tan, Hairen cc
    Jain, Ankit
    Voznyy, Oleksandr cc
    Lan, Xinzheng
    García de Arquer, F. Pelayo
    Fan, James Z.
    Quintero-Bermudez, Rafael
    Yuan, Mingjian
    Zhang, Bo
    Zhao, Yicheng
    Fan, Fengjia
    Li, Peicheng
    Quan, Li Na cc
    Zhao, Yongbiao
    Lu, Zheng-Hong
    Yang, Zhenyu cc
    Hoogland, Sjoerd
    Sargent, Edward H. cc
    Date
    2017-02-02
    Online Publication Date
    2017-02-02
    Print Publication Date
    2017-02-17
    Permanent link to this record
    http://hdl.handle.net/10754/623537
    
    Metadata
    Show full item record
    Abstract
    Planar perovskite solar cells (PSCs) made entirely via solution processing at low temperatures (<150°C) offer promise for simple manufacturing, compatibility with flexible substrates, and perovskite-based tandem devices. However, these PSCs require an electron-selective layer that performs well with similar processing. We report a contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells. We fabricated solar cells with certified efficiencies of 20.1 and 19.5% for active areas of 0.049 and 1.1 square centimeters, respectively, achieved via low-temperature solution processing. Solar cells with efficiency greater than 20% retained 90% (97% after dark recovery) of their initial performance after 500 hours of continuous room-temperature operation at their maximum power point under 1-sun illumination (where 1 sun is defined as the standard illumination at AM1.5, or 1 kilowatt/square meter).
    Citation
    Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, et al. (2017) Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355: 722–726. Available: http://dx.doi.org/10.1126/science.aai9081.
    Sponsors
    This publication is based, in part, on work supported by an award (KUS-11-009-21) from the King Abdullah University of Science and Technology, by the Ontario Research Fund Research Excellence Program, by the Ontario Research Fund, and by the Natural Sciences and Engineering Research Council of Canada. H.T. acknowledges the Netherlands Organisation for Scientific Research (NWO) for a Rubicon grant (680-50-1511) to support his postdoctoral research at the University of Toronto. The work of A.J. is supported by the IBM Canada Research and Development Center through the Southern Ontario Smart Computing Innovation Platform (SOSCIP) postdoctoral fellowship. F.P.G.A. acknowledges funding from the Connaught program. DFT calculations were performed on the IBM BlueGene Q supercomputer with support from the SOSCIP. We thank R. Wolowiec, E. Palmiano, D. Kopilovic, and J. Li for their help during the course of study. All data are reported in the main text and supplementary materials.
    Publisher
    American Association for the Advancement of Science (AAAS)
    Journal
    Science
    DOI
    10.1126/science.aai9081
    ae974a485f413a2113503eed53cd6c53
    10.1126/science.aai9081
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.