• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    DFT Perspective on the Thermochemistry of Carbon Nitride Synthesis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Melissen, Sigismund T. A. G. cc
    Steinmann, Stephan N. cc
    Le Bahers, Tangui
    Sautet, Philippe
    KAUST Grant Number
    KAUST 1974-02
    Date
    2016-10-24
    Online Publication Date
    2016-10-24
    Print Publication Date
    2016-11-03
    Permanent link to this record
    http://hdl.handle.net/10754/623534
    
    Metadata
    Show full item record
    Abstract
    Graphitic (g)-CxNyHz has become a popular family of photoharvesters in photocatalytic water splitting cells, as well as other applications in chemistry. In this Article, different g-CxNyHz structures were studied thermochemically using DFT. Following a benchmark study with different families of functionals, the B3LYP functional was shown to accurately capture the thermochemistry of carbon nitride synthesis. A triple-ζ polarized basis set, in combination with Civalleri’s modification to Grimme’s D2 formalism (with s6 = 0.5) for dispersion interactions, yielded accurate geometries. Grimme’s D3 formalism with Becke–Johnson damping was used to refine the energetic description of dispersion interactions. The stepwise cycloaddition of cyanamide to form melamine was shown to be exergonic, whereas the stepwise deamination of melamine to form g-C3N4 was shown to be endergonic. Of those structures respecting the [C6N9H3]n chemical formula, the structure commonly known as “melon” was found to be most stable, whereas the sp3-hybridized [C6N9H3]n elucidated by Horvath-Bordon et al. was found to be the least stable. Fully polymerized triazine-based g-C3N4 appeared slightly more stable than heptazine-based g-C3N4.
    Citation
    Melissen STAG, Steinmann SN, Le Bahers T, Sautet P (2016) DFT Perspective on the Thermochemistry of Carbon Nitride Synthesis. The Journal of Physical Chemistry C 120: 24542–24550. Available: http://dx.doi.org/10.1021/acs.jpcc.6b06335.
    Sponsors
    Funding for this work was provided by the King Abdullah University of Science and Technology (KAUST), within the framework of Special Academic Partnership Program “Water Splitting” (projects ENSL 14.065 and KAUST 1974-02). We gratefully acknowledge the computational resources provided by l’Institut du Développement et des Ressources en Informatique Scientifique (IDRIS, under project x2015080609) of the Centre National de la Recherche Scientifique (CNRS) and by the Pôle Scientifique de Modélisation Numérique (PSMN) at ENS Lyon. S.T.A.G.M. thanks Dr. R. Grüber (ENSL) and Prof. T. Maschmeyer’s Carbon Nitride team (Sydney University) for fruitful discussions.
    Publisher
    American Chemical Society (ACS)
    Journal
    The Journal of Physical Chemistry C
    DOI
    10.1021/acs.jpcc.6b06335
    ae974a485f413a2113503eed53cd6c53
    10.1021/acs.jpcc.6b06335
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.