Show simple item record

dc.contributor.authorMalpica Galassi, Riccardo
dc.contributor.authorValorani, Mauro
dc.contributor.authorNajm, Habib N.
dc.contributor.authorSafta, Cosmin
dc.contributor.authorKhalil, Mohammad
dc.contributor.authorCiottoli, Pietro P.
dc.date.accessioned2017-05-15T10:35:06Z
dc.date.available2017-05-15T10:35:06Z
dc.date.issued2017-03-06
dc.identifier.citationMalpica Galassi R, Valorani M, Najm HN, Safta C, Khalil M, et al. (2017) Chemical model reduction under uncertainty. Combustion and Flame 179: 242–252. Available: http://dx.doi.org/10.1016/j.combustflame.2017.02.018.
dc.identifier.issn0010-2180
dc.identifier.doi10.1016/j.combustflame.2017.02.018
dc.identifier.urihttp://hdl.handle.net/10754/623523
dc.description.abstractA general strategy for analysis and reduction of uncertain chemical kinetic models is presented, and its utility is illustrated in the context of ignition of hydrocarbon fuel–air mixtures. The strategy is based on a deterministic analysis and reduction method which employs computational singular perturbation analysis to generate simplified kinetic mechanisms, starting from a detailed reference mechanism. We model uncertain quantities in the reference mechanism, namely the Arrhenius rate parameters, as random variables with prescribed uncertainty factors. We propagate this uncertainty to obtain the probability of inclusion of each reaction in the simplified mechanism. We propose probabilistic error measures to compare predictions from the uncertain reference and simplified models, based on the comparison of the uncertain dynamics of the state variables, where the mixture entropy is chosen as progress variable. We employ the construction for the simplification of an uncertain mechanism in an n-butane–air mixture homogeneous ignition case, where a 176-species, 1111-reactions detailed kinetic model for the oxidation of n-butane is used with uncertainty factors assigned to each Arrhenius rate pre-exponential coefficient. This illustration is employed to highlight the utility of the construction, and the performance of a family of simplified models produced depending on chosen thresholds on importance and marginal probabilities of the reactions.
dc.description.sponsorshipThis work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94-AL85000. MV acknowledges the support of the Italian Ministry of University and Research (MIUR) and of CCRC/KAUST1975-03 CCF Subaward Agreement.
dc.publisherElsevier BV
dc.subjectUncertainty quantification
dc.subjectReaction mechanisms
dc.subjectChemical kinetics reduction
dc.subjectAutoignition
dc.titleChemical model reduction under uncertainty
dc.typeArticle
dc.identifier.journalCombustion and Flame
dc.contributor.institutionSapienza University of Rome, Rome, Italy
dc.contributor.institutionSandia National Laboratories, Livermore, CA 94551, USA
dc.date.published-online2017-03-06
dc.date.published-print2017-05


This item appears in the following Collection(s)

Show simple item record