• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Feng, Zhenxing
    Hong, Wesley T.
    Fong, Dillon D.
    Lee, Yueh-Lin
    Yacoby, Yizhak
    Morgan, Dane
    Shao-Horn, Yang
    Date
    2016-05-05
    Online Publication Date
    2016-05-05
    Print Publication Date
    2016-05-17
    Permanent link to this record
    http://hdl.handle.net/10754/623521
    
    Metadata
    Show full item record
    Abstract
    Conspectus Electrocatalysts play an important role in catalyzing the kinetics for oxygen reduction and oxygen evolution reactions for many air-based energy storage and conversion devices, such as metal–air batteries and fuel cells. Although noble metals have been extensively used as electrocatalysts, their limited natural abundance and high costs have motivated the search for more cost-effective catalysts. Oxides are suitable candidates since they are relatively inexpensive and have shown reasonably high activity for various electrochemical reactions. However, a lack of fundamental understanding of the reaction mechanisms has been a major hurdle toward improving electrocatalytic activity. Detailed studies of the oxide surface atomic structure and chemistry (e.g., cation migration) can provide much needed insights for the design of highly efficient and stable oxide electrocatalysts. In this Account, we focus on recent advances in characterizing strontium (Sr) cation segregation and enrichment near the surface of Sr-substituted perovskite oxides under different operating conditions (e.g., high temperature, applied potential), as well as their influence on the surface oxygen exchange kinetics at elevated temperatures. We contrast Sr segregation, which is associated with Sr redistribution in the crystal lattice near the surface, with Sr enrichment, which involves Sr redistribution via the formation of secondary phases. The newly developed coherent Bragg rod analysis (COBRA) and energy-modulated differential COBRA are uniquely powerful ways of providing information about surface and interfacial cation segregation at the atomic scale for these thin film electrocatalysts. In situ ambient pressure X-ray photoelectron spectroscopy (APXPS) studies under electrochemical operating conditions give additional insights into cation migration. Direct COBRA and APXPS evidence for surface Sr segregation was found for La1–xSrxCoO3−δ and (La1–ySry)2CoO4±δ/La1–xSrxCoO3−δ oxide thin films, and the physical origin of segregation is discussed in comparison with (La1–ySry)2CoO4±δ/La1–xSrxCo0.2Fe0.8O3−δ. Sr enrichment in many electrocatalysts, such as La1–xSrxMO3−δ (M = Cr, Co, Mn, or Co and Fe) and Sm1–xSrxCoO3, has been probed using alternative techniques, including low energy ion scattering, secondary ion mass spectrometry, and X-ray fluorescence-based methods for depth-dependent, element-specific analysis. We highlight a strong connection between cation segregation and electrocatalytic properties, because cation segregation enhances oxygen transport and surface oxygen exchange kinetics. On the other hand, the formation of cation-enriched secondary phases can lead to the blocking of active sites, inhibiting oxygen exchange. With help from density functional theory, the links between cation migration, catalyst stability, and catalytic activity are provided, and the oxygen p-band center relative to the Fermi level can be identified as an activity descriptor. Based on these findings, we discuss strategies to increase a catalyst’s activity while maintaining stability to design efficient, cost-effective electrocatalysts.
    Citation
    Feng Z, Hong WT, Fong DD, Lee Y-L, Yacoby Y, et al. (2016) Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions. Accounts of Chemical Research 49: 966–973. Available: http://dx.doi.org/10.1021/acs.accounts.5b00555.
    Sponsors
    This work was partially supported by United States Department of Energy (DOE) (No. SISGR DESC0002633) and King Abdullah University of Science and Technology. DDF was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Y.Y. was supported by the Israel Science Foundation (No. 1005/11). Y.L.L. was supported by DOE, National Energy Technology Laboratory, Solid State Energy Conversion Alliance Core Technology Program (No. DEFE0009435). The use of Advanced Photon Source of Argonne National Laboratory is supported by DOE under Contract No. DE-AC02-06CH11357. The use of Center for Nanophase Materials Sciences at Oak Ridge National Laboratory is supported by DOE under Contract No. CNMS2012-284.
    Publisher
    American Chemical Society (ACS)
    Journal
    Accounts of Chemical Research
    DOI
    10.1021/acs.accounts.5b00555
    ae974a485f413a2113503eed53cd6c53
    10.1021/acs.accounts.5b00555
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.