• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    An inverse-source problem for maximization of pore-fluid oscillation within poroelastic formations

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Jeong, C. cc
    Kallivokas, L. F.
    Date
    2016-07-04
    Online Publication Date
    2016-07-04
    Print Publication Date
    2017-06-03
    Permanent link to this record
    http://hdl.handle.net/10754/623514
    
    Metadata
    Show full item record
    Abstract
    This paper discusses a mathematical and numerical modeling approach for identification of an unknown optimal loading time signal of a wave source, atop the ground surface, that can maximize the relative wave motion of a single-phase pore fluid within fluid-saturated porous permeable (poroelastic) rock formations, surrounded by non-permeable semi-infinite elastic solid rock formations, in a one-dimensional setting. The motivation stems from a set of field observations, following seismic events and vibrational tests, suggesting that shaking an oil reservoir is likely to improve oil production rates. This maximization problem is cast into an inverse-source problem, seeking an optimal loading signal that minimizes an objective functional – the reciprocal of kinetic energy in terms of relative pore-fluid wave motion within target poroelastic layers. We use the finite element method to obtain the solution of the governing wave physics of a multi-layered system, where the wave equations for the target poroelastic layers and the elastic wave equation for the surrounding non-permeable layers are coupled with each other. We use a partial-differential-equation-constrained-optimization framework (a state-adjoint-control problem approach) to tackle the minimization problem. The numerical results show that the numerical optimizer recovers optimal loading signals, whose dominant frequencies correspond to amplification frequencies, which can also be obtained by a frequency sweep, leading to larger amplitudes of relative pore-fluid wave motion within the target hydrocarbon formation than other signals.
    Citation
    Jeong C, Kallivokas LF (2016) An inverse-source problem for maximization of pore-fluid oscillation within poroelastic formations. Inverse Problems in Science and Engineering 25: 832–863. Available: http://dx.doi.org/10.1080/17415977.2016.1201663.
    Sponsors
    This work was partially supported by an Academic Excellence Alliance grant between King Abdullah University of Science and Technology (KAUST) and the University of Texas at Austin and by the Society of Petroleum Engineers STAR Fellowship and the William S. Livingston Fellowship at the University of Texas at Austin awarded to the first author.
    Publisher
    Informa UK Limited
    Journal
    Inverse Problems in Science and Engineering
    DOI
    10.1080/17415977.2016.1201663
    ae974a485f413a2113503eed53cd6c53
    10.1080/17415977.2016.1201663
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.