• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Learning via Query Synthesis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Thesis_Final_Version.pdf
    Size:
    3.236Mb
    Format:
    PDF
    Download
    Type
    Dissertation
    Authors
    Alabdulmohsin, Ibrahim cc
    Advisors
    Zhang, Xiangliang cc
    Committee members
    Keyes, David E. cc
    Wang, Wei cc
    Gao, Xin cc
    Program
    Computer Science
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2017-05-07
    Permanent link to this record
    http://hdl.handle.net/10754/623482
    
    Metadata
    Show full item record
    Abstract
    Active learning is a subfield of machine learning that has been successfully used in many applications. One of the main branches of active learning is query synthe- sis, where the learning agent constructs artificial queries from scratch in order to reveal sensitive information about the underlying decision boundary. It has found applications in areas, such as adversarial reverse engineering, automated science, and computational chemistry. Nevertheless, the existing literature on membership query synthesis has, generally, focused on finite concept classes or toy problems, with a limited extension to real-world applications. In this thesis, I develop two spectral algorithms for learning halfspaces via query synthesis. The first algorithm is a maximum-determinant convex optimization method while the second algorithm is a Markovian method that relies on Khachiyan’s classical update formulas for solving linear programs. The general theme of these methods is to construct an ellipsoidal approximation of the version space and to synthesize queries, afterward, via spectral decomposition. Moreover, I also describe how these algorithms can be extended to other settings as well, such as pool-based active learning. Having demonstrated that halfspaces can be learned quite efficiently via query synthesis, the second part of this thesis proposes strategies for mitigating the risk of reverse engineering in adversarial environments. One approach that can be used to render query synthesis algorithms ineffective is to implement a randomized response. In this thesis, I propose a semidefinite program (SDP) for learning a distribution of classifiers, subject to the constraint that any individual classifier picked at random from this distributions provides reliable predictions with a high probability. This algorithm is, then, justified both theoretically and empirically. A second approach is to use a non-parametric classification method, such as similarity-based classification. In this thesis, I argue that learning via the empirical kernel maps, also commonly referred to as 1-norm Support Vector Machine (SVM) or Linear Programming (LP) SVM, is the best method for handling indefinite similarities. The advantages of this method are established both theoretically and empirically.
    Citation
    Alabdulmohsin, I. (2017). Learning via Query Synthesis. KAUST Research Repository. https://doi.org/10.25781/KAUST-HC4JH
    DOI
    10.25781/KAUST-HC4JH
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-HC4JH
    Scopus Count
    Collections
    PhD Dissertations; Computer Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.