• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • MS Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Optimization of Paper Discoloration via Pyrolysis Using Lasers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    MayadahAlhashemThesis.pdf
    Size:
    16.72Mb
    Format:
    PDF
    Description:
    Thesis Mayadah
    Download
    Type
    Thesis
    Authors
    Alhashem, Mayadah M. cc
    Advisors
    Dibble, Robert W. cc
    Committee members
    Sarathy, Mani cc
    Farooq, Aamir cc
    Program
    Mechanical Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2017-04
    Permanent link to this record
    http://hdl.handle.net/10754/623466
    
    Metadata
    Show full item record
    Abstract
    Printing ink is a main component of the modern printer, and it has always been throughout the history of printing. Ink and toners are expensive replaceable components that inkjet and laser printers cannot function without. The digital printing industry, which is majorly composed of monochrome printing, is expected to increase by 225% by 2024 from a 2013 baseline (Smithers et al., 2014). Expenses aside, toner cartridges and ink cartridges pose an overlooked threat to the environment. Manufacturing, packaging, transporting, and waste disposal of printer ink and toners result in carbon dioxide emissions. The complete elimination of ink in monochrome printing is potentially viable with the patented new discoloration technique. The patent studies a discoloration method by carbonizing a paper’s surface (Alhashem et al., 2015). The printing method optimizes surface paper pyrolysis via laser heating. The aim is obtaining the darkest possible shade without compromising paper quality. The challenge is in creating a printed area from the paper material itself, rather than depositing ink on paper. A 75-watt CO2 laser engraving machine emitting a 10.6 μm wavelength beam for heating is used with low power settings to carbonize a fraction of the paper surface. The carbonization is essentially a combustion reaction. Solid fuel burns in three stages: drying, devolatilization (pyrolysis, or distillation phase), and lastly, the char (charcoal) combustion. These stages are driven by heat from the CO2 laser. Moving the laser rapidly above the paper surface arrests the reaction at the second stage, after the formation of blackened char. The control variables in the experimental method are laser power, speed, and the vertical position that affects the laser intensity. Computer software controls these variables. The discoloration of paper is quantified by measuring the light absorptivity using a UV-Vis-IR Spectrometer.
    Citation
    Alhashem, M. M. (2017). Optimization of Paper Discoloration via Pyrolysis Using Lasers. KAUST Research Repository. https://doi.org/10.25781/KAUST-1IE20
    DOI
    10.25781/KAUST-1IE20
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-1IE20
    Scopus Count
    Collections
    MS Theses; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.