Spatiotemporal Stochastic Modeling of IoT Enabled Cellular Networks: Scalability and Stability Analysis
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Date
2017-05-02Online Publication Date
2017-05-02Print Publication Date
2017Permanent link to this record
http://hdl.handle.net/10754/623416
Metadata
Show full item recordAbstract
The Internet of Things (IoT) is large-scale by nature, which is manifested by the massive number of connected devices as well as their vast spatial existence. Cellular networks, which provide ubiquitous, reliable, and efficient wireless access, will play fundamental rule in delivering the first-mile access for the data tsunami to be generated by the IoT. However, cellular networks may have scalability problems to provide uplink connectivity to massive numbers of connected things. To characterize the scalability of cellular uplink in the context of IoT networks, this paper develops a traffic-aware spatiotemporal mathematical model for IoT devices supported by cellular uplink connectivity. The developed model is based on stochastic geometry and queueing theory to account for the traffic requirement per IoT device, the different transmission strategies, and the mutual interference between the IoT devices. To this end, the developed model is utilized to characterize the extent to which cellular networks can accommodate IoT traffic as well as to assess and compare three different transmission strategies that incorporate a combination of transmission persistency, backoff, and power-ramping. The analysis and the results clearly illustrate the scalability problem imposed by IoT on cellular network and offer insights into effective scenarios for each transmission strategy.Citation
Gharbieh M, ElSawy H, Bader A, Alouini M-S (2017) Spatiotemporal Stochastic Modeling of IoT Enabled Cellular Networks: Scalability and Stability Analysis. IEEE Transactions on Communications: 1–1. Available: http://dx.doi.org/10.1109/TCOMM.2017.2700309.Sponsors
The authors would like to thank Prof. Attahiru Alfa, Prof. Martin Haenggi, and Prof. Moe Win for their insightful discussions and comments.arXiv
1609.05384Additional Links
http://ieeexplore.ieee.org/document/7917340/ae974a485f413a2113503eed53cd6c53
10.1109/TCOMM.2017.2700309