• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Unraveling The Connectome: Visualizing and Abstracting Large-Scale Connectomics Data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ali_Thesis.pdf
    Size:
    54.52Mb
    Format:
    PDF
    Download
    Type
    Dissertation
    Authors
    Al-Awami, Ali K. cc
    Advisors
    Hadwiger, Markus cc
    Committee members
    Wonka, Peter cc
    Magistretti, Pierre J. cc
    Gröller, M. Eduard
    Program
    Computer Science
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2017-04-30
    Permanent link to this record
    http://hdl.handle.net/10754/623401
    
    Metadata
    Show full item record
    Abstract
    We explore visualization and abstraction approaches to represent neuronal data. Neuroscientists acquire electron microscopy volumes to reconstruct a complete wiring diagram of the neurons in the brain, called the connectome. This will be crucial to understanding brains and their development. However, the resulting data is complex and large, posing a big challenge to existing visualization techniques in terms of clarity and scalability. We describe solutions to tackle the problems of scalability and cluttered presentation. We first show how a query-guided interactive approach to visual exploration can reduce the clutter and help neuroscientists explore their data dynamically. We use a knowledge-based query algebra that facilitates the interactive creation of queries. This allows neuroscientists to pose domain-specific questions related to their research. Simple queries can be combined to form complex queries to answer more sophisticated questions. We then show how visual abstractions from 3D to 2D can significantly reduce the visual clutter and add clarity to the visualization so that scientists can focus more on the analysis. We abstract the topology of 3D neurons into a multi-scale, relative distance-preserving subway map visualization that allows scientists to interactively explore the morphological and connectivity features of neuronal cells. We then focus on the process of acquisition, where neuroscientists segment electron microscopy images to reconstruct neurons. The segmentation process of such data is tedious, time-intensive, and usually performed using a diverse set of tools. We present a novel web-based visualization system for tracking the state, progress, and evolution of segmentation data in neuroscience. Our multi-user system seamlessly integrates a diverse set of tools. Our system provides support for the management, provenance, accountability, and auditing of large-scale segmentations. Finally, we present a novel architecture to render very large volumes interactively. We focus on two aspects: (1) Segmented objects are often toggled on and off by an interactive query, which makes it unfeasible to pre-compute a well-adapted space subdivision. (2) To scale to large data, culling and empty-space skipping must scale with the output size instead of the input volume. Our approach combines the advantages of object- and image-order stages of the empty-space skipping process.
    Citation
    Al-Awami, A. K. (2017). Unraveling The Connectome: Visualizing and Abstracting Large-Scale Connectomics Data. KAUST Research Repository. https://doi.org/10.25781/KAUST-9W5JL
    DOI
    10.25781/KAUST-9W5JL
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-9W5JL
    Scopus Count
    Collections
    PhD Dissertations; Computer Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.