Bioinspired tannic acid-copper complexes as selective coating for nanofiltration membranes

Bio-polyphenols that are present in tea, date fruits, chockolate and many other plants have been recognized as scaffold material for the manufacture of composite filtration membranes. These phenolic biomolecules possess abundant gallol (1,2,3-trihydroxyphenyl) and catechol (1,2-dihydroxyphenyl) functional groups, which allow the spontaneous formation of a thin polymerized layer at the right pH conditions. Here, we report a facile and cost-effective method to coat porous membranes via the complexation of tannic acid (TA) and cupric acetate (mono hydrate) through co-deposition. The modified membranes were investigated by XPS, ATR/FTIR, water contact angle, SEM and water permeance for a structural and morphological analysis. The obtained results reveal that the modified membranes with TA and cupric acetate (CuII) developed a thin skin layer, which showed excellent hydrophilicity with good water permeance. These membranes were tested with different molecular weight polyethylene glycols (PEG) in aqueous solution; the MWCO was around 600 Daltons.

Chakrabarty T, Pérez-Manríquez L, Neelakanda P, Peinemann K-V (2017) Bioinspired tannic acid-copper complexes as selective coating for nanofiltration membranes. Separation and Purification Technology. Available:

We gratefully acknowledge the financial support from King Abdullah University of Science and Technology (KAUST). We also thank Mohamed Nejib Hedhiliand and Ali Behzad from KAUST Analytical core lab for XPS and SEM analysis.

Elsevier BV

Separation and Purification Technology


Additional Links

Permanent link to this record