Show simple item record

dc.contributor.authorTomasi, Andrea
dc.contributor.authorPaviet-Salomon, Bertrand
dc.contributor.authorJeangros, Quentin
dc.contributor.authorHaschke, Jan
dc.contributor.authorChristmann, Gabriel
dc.contributor.authorBarraud, Loris
dc.contributor.authorDescoeudres, Antoine
dc.contributor.authorSeif, Johannes Peter
dc.contributor.authorNicolay, Sylvain
dc.contributor.authorDespeisse, Matthieu
dc.contributor.authorDe Wolf, Stefaan
dc.contributor.authorBallif, Christophe
dc.date.accessioned2017-05-02T13:22:29Z
dc.date.available2017-05-02T13:22:29Z
dc.date.issued2017-04-24
dc.identifier.citationTomasi A, Paviet-Salomon B, Jeangros Q, Haschke J, Christmann G, et al. (2017) Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth. Nature Energy 2: 17062. Available: http://dx.doi.org/10.1038/nenergy.2017.62.
dc.identifier.issn2058-7546
dc.identifier.doi10.1038/nenergy.2017.62
dc.identifier.urihttp://hdl.handle.net/10754/623314
dc.description.abstractFor crystalline-silicon solar cells, voltages close to the theoretical limit are nowadays readily achievable when using passivating contacts. Conversely, maximal current generation requires the integration of the electron and hole contacts at the back of the solar cell to liberate its front from any shadowing loss. Recently, the world-record efficiency for crystalline-silicon single-junction solar cells was achieved by merging these two approaches in a single device; however, the complexity of fabricating this class of devices raises concerns about their commercial potential. Here we show a contacting method that substantially simplifies the architecture and fabrication of back-contacted silicon solar cells. We exploit the surface-dependent growth of silicon thin films, deposited by plasma processes, to eliminate the patterning of one of the doped carrier-collecting layers. Then, using only one alignment step for electrode definition, we fabricate a proof-of-concept 9-cm2 tunnel-interdigitated back-contact solar cell with a certified conversion efficiency >22.5%.
dc.description.sponsorshipThis work was supported by the Swiss Commission for Technology and Innovation (CTI) by the Swiss Federal Office for Energy (SFOE), and by the Fonds National Suisse Reequip Program. The authors thank Meyer Burger Research for scientific partnership and financial support; D. Lachenal and B. Strahm for support and collaboration in back-contacted silicon heterojunction solar-cell development; J. Hermans and Meyer Burger B.V. for the support in inkjet printing; M. Pickrell and SunChemicals for supplying the hot melt; the Academic Writing Services at KAUST for text editing; M. J. Lehmann, N. Badel and H. Watanabe at EPFL and CSEM for their support in back-end processing; and A. Hessler at EPFL and CIME for the TEM observations.
dc.publisherSpringer Nature
dc.relation.urlhttps://www.nature.com/articles/nenergy201762
dc.rightsThe final publication is available at Springer via http://dx.doi.org/10.1038/nenergy.2017.62
dc.titleSimple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth
dc.typeArticle
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalNature Energy
dc.eprint.versionPost-print
dc.contributor.institutionÉcole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue de la Maladière 71b, CH-2000 Neuchâtel, Switzerland
dc.contributor.institutionCentre Suisse d’Électronique et de Microtechnique (CSEM), PV-Center, Rue Jaquet-Droz 1, CH-2002 Neuchâtel, Switzerland
dc.contributor.institutionUniversity of Basel, Department of Physics, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
kaust.personDe Wolf, Stefaan
refterms.dateFOA2018-04-24T00:00:00Z
dc.date.published-online2017-04-24
dc.date.published-print2017-05


Files in this item

Thumbnail
Name:
Revision_Manuscript_no changes highlighted.pdf
Size:
1.365Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record