Dynamics of Transition Regime in Bi-stable Vibration Energy Harvesters
dc.contributor.author | Ibrahim, Alwathiqbellah | |
dc.contributor.author | Towfighian, Shahrzad | |
dc.contributor.author | Younis, Mohammad I. | |
dc.date.accessioned | 2017-04-30T10:16:59Z | |
dc.date.available | 2017-04-30T10:16:59Z | |
dc.date.issued | 2017-04-20 | |
dc.identifier.citation | Ibrahim A, Towfighian S, Younis M (2017) Dynamics of Transition Regime in Bi-stable Vibration Energy Harvesters. Journal of Vibration and Acoustics. Available: http://dx.doi.org/10.1115/1.4036503. | |
dc.identifier.issn | 1048-9002 | |
dc.identifier.doi | 10.1115/1.4036503 | |
dc.identifier.uri | http://hdl.handle.net/10754/623289 | |
dc.description.abstract | Vibration energy harvesting can be an effective method for scavenging wasted mechanical energy for use by wireless sensors that have limited battery life. Two major goals in designing energy harvesters are enhancing the power scavenged at low frequency and improving efficiency by increasing the frequency bandwidth. To achieve these goals, we derived a magneto-elastic beam operated at the transition between mono- and bi-stable regions. By improving the mathematical model of the interaction of magnetic force and beam dynamics, we obtained a precise prediction of natural frequencies as the distance of magnets varies. Using the shooting technique for the improved model, we present a fundamental understanding of interesting combined softening and hardening responses that happen at the transition between the two regimes. The transition regime is proposed as the optimal region for energy conversion in terms of frequency bandwidth and output voltage. Using this technique, low frequency vibration energy harvesting at around 17 Hz was possible. The theoretical results were in good agreement with the experimental results. The target application is to power wildlife bio-logging devices from bird flights that have consistent high power density around 16 Hz [1]. | |
dc.publisher | ASME International | |
dc.relation.url | http://vibrationacoustics.asmedigitalcollection.asme.org/article.aspx?articleid=2623146 | |
dc.rights | Archived with thanks to Journal of Vibration and Acoustics | |
dc.subject | Dynamics (Mechanics) | |
dc.subject | Vibration | |
dc.subject | Energy harvesting | |
dc.subject | Flight | |
dc.subject | Battery life | |
dc.subject | Power density | |
dc.subject | Sensors | |
dc.subject | Magnets | |
dc.subject | Magnetic fields | |
dc.subject | Hardening | |
dc.title | Dynamics of Transition Regime in Bi-stable Vibration Energy Harvesters | |
dc.type | Article | |
dc.contributor.department | Mechanical Engineering Program | |
dc.contributor.department | Physical Science and Engineering (PSE) Division | |
dc.identifier.journal | Journal of Vibration and Acoustics | |
dc.eprint.version | Post-print | |
dc.contributor.institution | Department of Mechanical Engineering Binghamton University 4400 Vestal Parkway E. Binghamton, NY 13902 | |
dc.contributor.institution | Department of Mechanical Engineering State University of New York at Binghamton 4400 Vestal Parkway E. Binghamton, NY 13902 | |
kaust.person | Younis, Mohammad I. | |
refterms.dateFOA | 2018-04-20T00:00:00Z | |
dc.date.published-online | 2017-04-20 | |
dc.date.published-print | 2017-06-28 |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Physical Science and Engineering (PSE) Division
For more information visit: http://pse.kaust.edu.sa/ -
Mechanical Engineering Program
For more information visit: https://pse.kaust.edu.sa/study/academic-programs/mechanical-engineering/Pages/home.aspx