Type
ArticleAuthors
Boudellioua, Imene
Mohamad Razali, Rozaimi

Kulmanov, Maxat

Hashish, Yasmeen

Bajic, Vladimir B.

Goncalves-Serra, Eva
Schoenmakers, Nadia
Gkoutos, Georgios V.
Schofield, Paul N.
Hoehndorf, Robert

KAUST Department
Applied Mathematics and Computational Science ProgramBio-Ontology Research Group (BORG)
Computational Bioscience Research Center (CBRC)
Computer Science Program
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Date
2017-04-17Permanent link to this record
http://hdl.handle.net/10754/623278
Metadata
Show full item recordAbstract
Discriminating the causative disease variant(s) for individuals with inherited or de novo mutations presents one of the main challenges faced by the clinical genetics community today. Computational approaches for variant prioritization include machine learning methods utilizing a large number of features, including molecular information, interaction networks, or phenotypes. Here, we demonstrate the PhenomeNET Variant Predictor (PVP) system that exploits semantic technologies and automated reasoning over genotype-phenotype relations to filter and prioritize variants in whole exome and whole genome sequencing datasets. We demonstrate the performance of PVP in identifying causative variants on a large number of synthetic whole exome and whole genome sequences, covering a wide range of diseases and syndromes. In a retrospective study, we further illustrate the application of PVP for the interpretation of whole exome sequencing data in patients suffering from congenital hypothyroidism. We find that PVP accurately identifies causative variants in whole exome and whole genome sequencing datasets and provides a powerful resource for the discovery of causal variants.Citation
Boudellioua I, Mahamad Razali RB, Kulmanov M, Hashish Y, Bajic VB, et al. (2017) Semantic prioritization of novel causative genomic variants. PLOS Computational Biology 13: e1005500. Available: http://dx.doi.org/10.1371/journal.pcbi.1005500.Sponsors
This research used the resources of the Computational Bioscience Research Center and the Supercomputing Laboratory at King Abdullah University of Science & Technology (KAUST) in Thuwal, Saudi Arabia.Publisher
Public Library of Science (PLoS)Journal
PLOS Computational Biologyae974a485f413a2113503eed53cd6c53
10.1371/journal.pcbi.1005500
Scopus Count
Except where otherwise noted, this item's license is described as This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.