Show simple item record

dc.contributor.authorZhou, Zhen
dc.contributor.authorHernandez Perez, Francisco
dc.contributor.authorShoshin, Yuriy
dc.contributor.authorvan Oijen, Jeroen A.
dc.contributor.authorde Goey, Laurentius P.H.
dc.date.accessioned2017-04-20T08:08:16Z
dc.date.available2017-04-20T08:08:16Z
dc.date.issued2017-04-12
dc.identifier.citationZhou Z, Hernández-Pérez FE, Shoshin Y, van Oijen JA, de Goey LPH (2017) Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature. Combustion Theory and Modelling: 1–18. Available: http://dx.doi.org/10.1080/13647830.2017.1311028.
dc.identifier.issn1364-7830
dc.identifier.issn1741-3559
dc.identifier.doi10.1080/13647830.2017.1311028
dc.identifier.urihttp://hdl.handle.net/10754/623261
dc.description.abstractThe influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.
dc.description.sponsorshipThe authors thank Professor Clinton Groth for providing access to the Computational Framework for Fluids and Combustion (CFFC) code. The financial support is gratefully acknowledged of the Dutch Technology Foundation (STW) [Project 13549].
dc.publisherInforma UK Limited
dc.relation.urlhttp://www.tandfonline.com/action/showCopyRight?scroll=top&doi=10.1080%2F13647830.2017.1311028
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectSoret diffusion
dc.subjecthydrogen/air
dc.subjectmass burning rate
dc.subjectcellular flame
dc.titleEffect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.identifier.journalCombustion Theory and Modelling
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionDepartment of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
kaust.personHernandez Perez, Francisco
refterms.dateFOA2018-06-13T18:37:22Z
dc.date.published-online2017-04-12
dc.date.published-print2017-09-03


Files in this item

Thumbnail
Name:
4_18_2017_Effect of .pdf
Size:
2.073Mb
Format:
PDF
Description:
Main article

This item appears in the following Collection(s)

Show simple item record

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
Except where otherwise noted, this item's license is described as This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.