Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature
Type
ArticleAuthors
Zhou, ZhenHernandez Perez, Francisco
Shoshin, Yuriy
van Oijen, Jeroen A.
de Goey, Laurentius P.H.

KAUST Department
Clean Combustion Research CenterDate
2017-04-12Online Publication Date
2017-04-12Print Publication Date
2017-09-03Permanent link to this record
http://hdl.handle.net/10754/623261
Metadata
Show full item recordAbstract
The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.Citation
Zhou Z, Hernández-Pérez FE, Shoshin Y, van Oijen JA, de Goey LPH (2017) Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature. Combustion Theory and Modelling: 1–18. Available: http://dx.doi.org/10.1080/13647830.2017.1311028.Sponsors
The authors thank Professor Clinton Groth for providing access to the Computational Framework for Fluids and Combustion (CFFC) code. The financial support is gratefully acknowledged of the Dutch Technology Foundation (STW) [Project 13549].Publisher
Informa UK LimitedJournal
Combustion Theory and ModellingAdditional Links
http://www.tandfonline.com/action/showCopyRight?scroll=top&doi=10.1080%2F13647830.2017.1311028ae974a485f413a2113503eed53cd6c53
10.1080/13647830.2017.1311028
Scopus Count
Except where otherwise noted, this item's license is described as This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.