Ab initio Assessment of Bi1-xRExCuOS (RE=La, Gd, Y, Lu) Solid Solution as Semiconductor for Photochemical Water Splitting
Type
ArticleKAUST Department
Chemical Science ProgramKAUST Catalysis Center (KCC)
Physical Science and Engineering (PSE) Division
Date
2017Permanent link to this record
http://hdl.handle.net/10754/623257
Metadata
Show full item recordAbstract
The investigation of BiCuOCh (Ch = S, Se and Te) semiconductors family for thermoelectric or photovoltaic materials is an increasing topic of research. These materials can also be considered for photochemical water splitting if one representative having a bandgap, Eg, around 2 eV can be developed. With this aim, we simulated the solid solution Bi1-xRExCuOS (RE = Y, La, Gd and Lu) from pure BiCuOS (Eg~1.1 eV) to pure RECuOS compositions (Eg~2.9 eV) by DFT calculations based on the HSE06 range-separated hybrid functional with inclusion of spin-orbit coupling. Starting from the thermodynamic stability of the solid solution, a large variety of properties were computed for each system including bandgap, dielectric constants, effective masses and exciton binding energies. We discussed the variation of these properties based on the relative organization of Bi and RE atoms in their common sublattice to offer a physical understanding of the influence of the RE doping of BiCuOS. Some compositions were found to give appropriate properties for water splitting application. Furthermore, we found that at low RE fractions the transport properties of BiCuOS are improved that can find applications beyond water splitting.Citation
Lardhi S, Curutchet A, Cavallo L, Harb M, Le Bahers T (2017) Ab initio Assessment of Bi1-xRExCuOS (RE=La, Gd, Y, Lu) Solid Solution as Semiconductor for Photochemical Water Splitting. Phys Chem Chem Phys. Available: http://dx.doi.org/10.1039/c7cp01684k.Sponsors
AC and TLB acknowledge the PSMN and IDRIS computation centers for providing calculation resources. LC acknowledges the Supercomputing Laboratory at KAUST for providing calculation resources. LC acknowledges the King Abdullah University of Science and Technology (KAUST) for support to this research.Publisher
Royal Society of Chemistry (RSC)ae974a485f413a2113503eed53cd6c53
10.1039/c7cp01684k