• Login
    View Item 
    •   Home
    • Research
    • Conference Papers
    • View Item
    •   Home
    • Research
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Highly Tunable Electrothermally Actuated Arch Resonator

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Hajjaj, Amal cc
    Ramini, Abdallah
    Alcheikh, Nouha cc
    Younis, Mohammad I. cc
    KAUST Department
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2016-12-05
    Online Publication Date
    2016-12-05
    Print Publication Date
    2016-08-21
    Permanent link to this record
    http://hdl.handle.net/10754/623228
    
    Metadata
    Show full item record
    Abstract
    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated MEMS arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and results of a multi-physics finite-element model. A good agreement is found among all the results. The electrothermal voltage is applied between the anchors of the clamped-clamped MEMS arch beam, generating a current that passes through the MEMS arch beam and controls its axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to increase in its curvature, thereby increases the resonance frequencies of the structure. We show here that the first resonance frequency can increase up to twice its initial value. We show also that after some electro-thermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators.
    Citation
    Hajjaj AZ, Ramini A, Alcheikh N, Younis MI (2016) Highly Tunable Electrothermally Actuated Arch Resonator. Volume 6: 12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. Available: http://dx.doi.org/10.1115/detc2016-59898.
    Publisher
    ASME International
    Journal
    Volume 6: 12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
    DOI
    10.1115/detc2016-59898
    Additional Links
    http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=2592032
    ae974a485f413a2113503eed53cd6c53
    10.1115/detc2016-59898
    Scopus Count
    Collections
    Conference Papers; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.