• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    A combined high-temperature experimental and theoretical kinetic study of the reaction of dimethyl carbonate with OH radicals

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    DMC+OH_PCCP_AF_BG_LKH_v12.pdf
    Size:
    1.310Mb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Article
    Authors
    KHALED, Fethi cc
    Giri, Binod
    Szőri, Milán cc
    Mai, Tam V.-T.
    Huynh, Lam K.
    Farooq, Aamir cc
    KAUST Department
    Chemical Kinetics & Laser Sensors Laboratory
    Clean Combustion Research Center
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2017
    Permanent link to this record
    http://hdl.handle.net/10754/623177
    
    Metadata
    Show full item record
    Abstract
    The reaction kinetics of dimethyl carbonate (DMC) and OH radicals were investigated behind reflected shock waves over the temperature range of 872-1295 K and at pressures near 1.5 atm. Reaction progress was monitored by detecting OH radicals at 306.69 nm using a UV laser absorption technique. The rate coefficients for the reaction of DMC with OH radicals were extracted using a detailed kinetic model developed by Glaude et al. (Proc. Combust. Inst. 2005, 30(1), 1111-1118). The experimental rate coefficients can be expressed in Arrhenius form as: kexpt'l = 5.15 × 10(13) exp(-2710.2/T) cm(3) mol(-1) s(-1). To explore the detailed chemistry of the DMC + OH reaction system, theoretical kinetic analyses were performed using high-level ab initio and master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) calculations. Geometry optimization and frequency calculations were carried out at the second-order Møller-Plesset (MP2) perturbation level of theory using Dunning's augmented correlation consistent-polarized valence double-ζ basis set (aug-cc-pVDZ). The energy was extrapolated to the complete basis set using single point calculations performed at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory. For comparison purposes, additional ab initio calculations were also carried out using composite methods such as CBS-QB3, CBS-APNO, G3 and G4. Our calculations revealed that the H-abstraction reaction of DMC by OH radicals proceeds via an addition elimination mechanism in an overall exothermic process, eventually forming dimethyl carbonate radicals and H2O. Theoretical rate coefficients were found to be in excellent agreement with those determined experimentally. Rate coefficients for the DMC + OH reaction were combined with literature rate coefficients of four straight chain methyl ester + OH reactions to extract site-specific rates of H-abstraction from methyl esters by OH radicals.
    Citation
    Khaled F, Giri BR, Szőri M, Mai TV-T, Huynh LK, et al. (2017) A combined high-temperature experimental and theoretical kinetic study of the reaction of dimethyl carbonate with OH radicals. Physical Chemistry Chemical Physics 19: 7147–7157. Available: http://dx.doi.org/10.1039/c6cp07318b.
    Sponsors
    Research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST) under the Clean Combustion Research Center's CCF program on Future Fuels. Dr Milán Szőri acknowledges Hungarian Academy of Sciences (BO/00113/15/7) for a János Bolyai Research Scholarship and a Magyary Zoltán Fellowship provided by the State of Hungary and the European Union within the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 “National Excellence Program” under the respective grant number of A2-MZPD-12-0139. He further acknowledges the support provided by the “Establishment of collaboration between the higher education and industry (FIEK) involving University of Miskolc for advanced materials and intelligent technologies” under the program (GINOP-2.3.4-15-2016-00004). The computations described in this work were performed on the research computing facilities at KAUST, the computing facility at the University of Szeged, Hungary, and the International University Laboratory for Computational Biochemistry, Institute for Computational Science and Technology at Ho Chi Minh City, Vietnam. The authors further thank László Müller and Máté Labádi of University of Szeged for administrating the computing systems.
    Publisher
    Royal Society of Chemistry (RSC)
    Journal
    Physical Chemistry Chemical Physics
    DOI
    10.1039/c6cp07318b
    Additional Links
    http://pubs.rsc.org/en/Content/ArticleLanding/2017/CP/C6CP07318B#!divAbstract
    ae974a485f413a2113503eed53cd6c53
    10.1039/c6cp07318b
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.