Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

Abstract
Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L−1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.

Citation
Li W, Fu H-C, Li L, Cabán-Acevedo M, He J-H, et al. (2016) Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices. Angewandte Chemie International Edition 55: 13104–13108. Available: http://dx.doi.org/10.1002/anie.201606986.

Acknowledgements
This research is supported by UW-Madison and also partially supported by the NSF Grant DMR-1508558. H.-C.F. and J.-H.H. are supported by the KAUST baseline fund for design and fabrication of Si solar cells.

Publisher
Wiley

Journal
Angewandte Chemie

DOI
10.1002/anie.201606986
10.1002/ange.201606986

Additional Links
http://onlinelibrary.wiley.com/doi/10.1002/anie.201606986/full

Permanent link to this record