Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
KAUST Solar Center (KSC)
Nano Energy Lab
Physical Science and Engineering (PSE) Division
Date
2016-10-06Online Publication Date
2016-10-06Print Publication Date
2016-10-10Permanent link to this record
http://hdl.handle.net/10754/623157
Metadata
Show full item recordAbstract
Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L−1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.Citation
Li W, Fu H-C, Li L, Cabán-Acevedo M, He J-H, et al. (2016) Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices. Angewandte Chemie International Edition 55: 13104–13108. Available: http://dx.doi.org/10.1002/anie.201606986.Sponsors
This research is supported by UW-Madison and also partially supported by the NSF Grant DMR-1508558. H.-C.F. and J.-H.H. are supported by the KAUST baseline fund for design and fabrication of Si solar cells.Publisher
Wiley-BlackwellAdditional Links
http://onlinelibrary.wiley.com/doi/10.1002/anie.201606986/fullae974a485f413a2113503eed53cd6c53
10.1002/anie.201606986