• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Latent Feature Models for Uncovering Human Mobility Patterns from Anonymized User Location Traces with Metadata

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Thesis.pdf
    Size:
    4.255Mb
    Format:
    PDF
    Download
    Type
    Dissertation
    Authors
    Alharbi, Basma Mohammed cc
    Advisors
    Zhang, Xiangliang cc
    Committee members
    Gao, Xin cc
    Moshkov, Mikhail cc
    Xiong, Hui
    Program
    Computer Science
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2017-04-10
    Embargo End Date
    2018-04-10
    Permanent link to this record
    http://hdl.handle.net/10754/623122
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2018-04-10.
    Abstract
    In the mobile era, data capturing individuals’ locations have become unprecedentedly available. Data from Location-Based Social Networks is one example of large-scale user-location data. Such data provide a valuable source for understanding patterns governing human mobility, and thus enable a wide range of research. However, mining and utilizing raw user-location data is a challenging task. This is mainly due to the sparsity of data (at the user level), the imbalance of data with power-law users and locations check-ins degree (at the global level), and more importantly the lack of a uniform low-dimensional feature space describing users. Three latent feature models are proposed in this dissertation. Each proposed model takes as an input a collection of user-location check-ins, and outputs a new representation space for users and locations respectively. To avoid invading users privacy, the proposed models are designed to learn from anonymized location data where only IDs - not geophysical positioning or category - of locations are utilized. To enrich the inferred mobility patterns, the proposed models incorporate metadata, often associated with user-location data, into the inference process. In this dissertation, two types of metadata are utilized to enrich the inferred patterns, timestamps and social ties. Time adds context to the inferred patterns, while social ties amplifies incomplete user-location check-ins. The first proposed model incorporates timestamps by learning from collections of users’ locations sharing the same discretized time. The second proposed model also incorporates time into the learning model, yet takes a further step by considering time at different scales (hour of a day, day of a week, month, and so on). This change in modeling time allows for capturing meaningful patterns over different times scales. The last proposed model incorporates social ties into the learning process to compensate for inactive users who contribute a large volume of incomplete user-location check-ins. To assess the quality of the new representation spaces for each model, evaluation is done using an external application, social link prediction, in addition to case studies and analysis of inferred patterns. Each proposed model is compared to baseline models, where results show significant improvements.
    Citation
    Alharbi, B. M. (2017). Latent Feature Models for Uncovering Human Mobility Patterns from Anonymized User Location Traces with Metadata. KAUST Research Repository. https://doi.org/10.25781/KAUST-UP72C
    DOI
    10.25781/KAUST-UP72C
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-UP72C
    Scopus Count
    Collections
    PhD Dissertations; Computer Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.